These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 12895608)

  • 1. Tissue engineered cartilage generated from human trachea using DegraPol scaffold.
    Yang L; Korom S; Welti M; Hoerstrup SP; Zünd G; Jung FJ; Neuenschwander P; Weder W
    Eur J Cardiothorac Surg; 2003 Aug; 24(2):201-7. PubMed ID: 12895608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea.
    Tan Q; Steiner R; Yang L; Welti M; Neuenschwander P; Hillinger S; Weder W
    Eur J Cardiothorac Surg; 2007 May; 31(5):806-11. PubMed ID: 17320405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering].
    Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human tracheal chondrocytes as a cell source for augmenting stenotic tracheal segments: the first feasibility study in an in vivo culture system.
    Komura M; Komura H; Tanaka Y; Kanamori Y; Sugiyama M; Nakahara S; Kawashima H; Suzuki K; Hoshi K; Iwanaka T
    Pediatr Surg Int; 2008 Oct; 24(10):1117-21. PubMed ID: 18762951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of type II collagen scaffolds reinforced by poly(epsilon-caprolactone) as tissue-engineered trachea.
    Lin CH; Su JM; Hsu SH
    Tissue Eng Part C Methods; 2008 Mar; 14(1):69-77. PubMed ID: 18454647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction.
    Tan Q; Hillinger S; van Blitterswijk CA; Weder W
    Interact Cardiovasc Thorac Surg; 2009 Jan; 8(1):27-30. PubMed ID: 18550604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue engineering of trachea-like cartilage grafts by using chondrocyte macroaggregate: experimental study in rabbits.
    Wu W; Cheng X; Zhao Y; Chen F; Feng X; Mao T
    Artif Organs; 2007 Nov; 31(11):826-34. PubMed ID: 18001392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support.
    Ruszymah BH; Chua K; Latif MA; Hussein FN; Saim AB
    Int J Pediatr Otorhinolaryngol; 2005 Nov; 69(11):1489-95. PubMed ID: 15941595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental study of tissue engineered cartilage construction using oriented scaffold combined with bone marrow mesenchymal stem cells in vivo].
    Duan W; Da H; Wang W; Lü S; Xiong Z; Liu J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):513-9. PubMed ID: 23879085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of mechanical properties of engineered cartilage in an in vivo culture for design of a biodegradable scaffold.
    Komura M; Komura H; Kanamori Y; Tanaka Y; Ohatani Y; Ishimaru T; Sugiyama M; Hoshi K; Iwanaka T
    Int J Artif Organs; 2010 Nov; 33(11):775-81. PubMed ID: 21140353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered trachea from sheep marrow stromal cells with transforming growth factor beta2 released from biodegradable microspheres in a nude rat recipient.
    Kojima K; Ignotz RA; Kushibiki T; Tinsley KW; Tabata Y; Vacanti CA
    J Thorac Cardiovasc Surg; 2004 Jul; 128(1):147-53. PubMed ID: 15224034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chondrocyte-biocompatibility of DegraPol-foam: in vitro evaluations.
    Saad B; Moro M; Tun-Kyi A; Welti M; Schmutz P; Uhlschmid GK; Neuenschwander P; Suter UW
    J Biomater Sci Polym Ed; 1999; 10(11):1107-19. PubMed ID: 10606029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures.
    Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ
    Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.
    Ren X; Wang F; Chen C; Gong X; Yin L; Yang L
    BMC Musculoskelet Disord; 2016 Jul; 17():301. PubMed ID: 27439428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study.
    Fuss M; Ehlers EM; Russlies M; Rohwedel J; Behrens P
    Ann Anat; 2000 Jul; 182(4):303-10. PubMed ID: 10932320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea.
    Kojima K; Bonassar LJ; Ignotz RA; Syed K; Cortiella J; Vacanti CA
    Ann Thorac Surg; 2003 Dec; 76(6):1884-8. PubMed ID: 14667605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds.
    Eyrich D; Wiese H; Maier G; Skodacek D; Appel B; Sarhan H; Tessmar J; Staudenmaier R; Wenzel MM; Goepferich A; Blunk T
    Tissue Eng; 2007 Sep; 13(9):2207-18. PubMed ID: 17678413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size.
    Conoscenti G; Schneider T; Stoelzel K; Carfì Pavia F; Brucato V; Goegele C; La Carrubba V; Schulze-Tanzil G
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():449-459. PubMed ID: 28866186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.