These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12897006)

  • 1. Molecular analysis of Phr peptide processing in Bacillus subtilis.
    Stephenson S; Mueller C; Jiang M; Perego M
    J Bacteriol; 2003 Aug; 185(16):4861-71. PubMed ID: 12897006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide.
    Diaz AR; Core LJ; Jiang M; Morelli M; Chiang CH; Szurmant H; Perego M
    J Bacteriol; 2012 Mar; 194(6):1378-88. PubMed ID: 22267516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis.
    Jiang M; Grau R; Perego M
    J Bacteriol; 2000 Jan; 182(2):303-10. PubMed ID: 10629174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TPR-mediated interaction of RapC with ComA inhibits response regulator-DNA binding for competence development in Bacillus subtilis.
    Core L; Perego M
    Mol Microbiol; 2003 Sep; 49(6):1509-22. PubMed ID: 12950917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis.
    Perego M; Hoch JA
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1549-53. PubMed ID: 8643670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of the PepF oligopeptidase inhibits sporulation initiation in Bacillus subtilis.
    Kanamaru K; Stephenson S; Perego M
    J Bacteriol; 2002 Jan; 184(1):43-50. PubMed ID: 11741842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pentapeptide regulation of aspartyl-phosphate phosphatases.
    Perego M; Brannigan JA
    Peptides; 2001 Oct; 22(10):1541-7. PubMed ID: 11587783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems.
    Bongiorni C; Ishikawa S; Stephenson S; Ogasawara N; Perego M
    J Bacteriol; 2005 Jul; 187(13):4353-61. PubMed ID: 15968044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis.
    Lazazzera BA; Kurtser IG; McQuade RS; Grossman AD
    J Bacteriol; 1999 Sep; 181(17):5193-200. PubMed ID: 10464187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis.
    Solomon JM; Lazazzera BA; Grossman AD
    Genes Dev; 1996 Aug; 10(16):2014-24. PubMed ID: 8769645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities. Constitutive and temporally controlled expression of different sip genes.
    Tjalsma H; Noback MA; Bron S; Venema G; Yamane K; van Dijl JM
    J Biol Chem; 1997 Oct; 272(41):25983-92. PubMed ID: 9325333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides.
    Auchtung JM; Lee CA; Grossman AD
    J Bacteriol; 2006 Jul; 188(14):5273-85. PubMed ID: 16816200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis.
    Perego M; Glaser P; Hoch JA
    Mol Microbiol; 1996 Mar; 19(6):1151-7. PubMed ID: 8730857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases.
    Koetje EJ; Hajdo-Milasinovic A; Kiewiet R; Bron S; Tjalsma H
    Microbiology (Reading); 2003 Jan; 149(Pt 1):19-28. PubMed ID: 12576576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of residues important for cleavage of the extracellular signaling peptide CSF of Bacillus subtilis from its precursor protein.
    Lanigan-Gerdes S; Briceno G; Dooley AN; Faull KF; Lazazzera BA
    J Bacteriol; 2008 Oct; 190(20):6668-75. PubMed ID: 18689487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis.
    Smits WK; Bongiorni C; Veening JW; Hamoen LW; Kuipers OP; Perego M
    Mol Microbiol; 2007 Jul; 65(1):103-20. PubMed ID: 17581123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis.
    Pottathil M; Lazazzera BA
    Front Biosci; 2003 Jan; 8():d32-45. PubMed ID: 12456319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signalling peptide of Bacillus subtilis.
    Lanigan-Gerdes S; Dooley AN; Faull KF; Lazazzera BA
    Mol Microbiol; 2007 Sep; 65(5):1321-33. PubMed ID: 17666034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of the Rap-Phr quorum-sensing systems in the Bacillus cereus group.
    Cardoso PF; Perchat S; Vilas-Boas LA; Lereclus D; Vilas-Bôas GT
    Curr Genet; 2019 Dec; 65(6):1367-1381. PubMed ID: 31104082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay.
    Perego M
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8612-7. PubMed ID: 9238025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.