These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 12898063)
1. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Kuroda K; Ueda M Appl Microbiol Biotechnol; 2003 Dec; 63(2):182-6. PubMed ID: 12898063 [TBL] [Abstract][Full Text] [Related]
2. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Kuroda K; Ueda M Appl Microbiol Biotechnol; 2006 Apr; 70(4):458-63. PubMed ID: 16091929 [TBL] [Abstract][Full Text] [Related]
3. Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Kuroda K; Ueda M; Shibasaki S; Tanaka A Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):259-64. PubMed ID: 12111155 [TBL] [Abstract][Full Text] [Related]
4. Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Sousa C; Cebolla A; de Lorenzo V Nat Biotechnol; 1996 Aug; 14(8):1017-20. PubMed ID: 9631043 [TBL] [Abstract][Full Text] [Related]
5. Cell Surface Display of Four Types of Solanum nigrum Metallothionein on Saccharomyces cerevisiae for Biosorption of Cadmium. Wei Q; Zhang H; Guo D; Ma S J Microbiol Biotechnol; 2016 May; 26(5):846-53. PubMed ID: 26838339 [TBL] [Abstract][Full Text] [Related]
6. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Kuroda K; Shibasaki S; Ueda M; Tanaka A Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):697-701. PubMed ID: 11778880 [TBL] [Abstract][Full Text] [Related]
7. Enhanced metallosorption of Escherichia coli cells due to surface display of beta- and alpha-domains of mammalian metallothionein as a fusion to LamB protein. Kotrba P; Pospisil P; de Lorenzo V; Ruml T J Recept Signal Transduct Res; 1999; 19(1-4):703-15. PubMed ID: 10071794 [TBL] [Abstract][Full Text] [Related]
8. Cadmium removal from aqueous solution by gene-modified Escherichia coli JM109. Deng X; Yi XE; Liu G J Hazard Mater; 2007 Jan; 139(2):340-4. PubMed ID: 16890348 [TBL] [Abstract][Full Text] [Related]
9. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. Ueda M; Tanaka A J Biosci Bioeng; 2000; 90(2):125-36. PubMed ID: 16232831 [TBL] [Abstract][Full Text] [Related]
10. Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Nishitani T; Shimada M; Kuroda K; Ueda M Appl Microbiol Biotechnol; 2010 Mar; 86(2):641-8. PubMed ID: 19894045 [TBL] [Abstract][Full Text] [Related]
11. Development of novel yeast cell surface display system for homo-oligomeric protein by coexpression of native and anchored subunits. Furukawa H; Tanino T; Fukuda H; Kondo A Biotechnol Prog; 2006; 22(4):994-7. PubMed ID: 16889375 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Kuroda K; Matsui K; Higuchi S; Kotaka A; Sahara H; Hata Y; Ueda M Appl Microbiol Biotechnol; 2009 Mar; 82(4):713-9. PubMed ID: 19123001 [TBL] [Abstract][Full Text] [Related]
13. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. Sousa C; Kotrba P; Ruml T; Cebolla A; De Lorenzo V J Bacteriol; 1998 May; 180(9):2280-4. PubMed ID: 9573175 [TBL] [Abstract][Full Text] [Related]
14. Selective cadmium accumulation using recombinant Escherichia coli. Kim SK; Lee BS; Wilson DB; Kim EK J Biosci Bioeng; 2005 Feb; 99(2):109-14. PubMed ID: 16233765 [TBL] [Abstract][Full Text] [Related]
15. Molasses induced changes in Saccharomyces cerevisiae: alterations in plasma membrane structure and function and metallothionein level. Bhatnagar NB Biochem Int; 1990 Nov; 22(4):781-90. PubMed ID: 2127672 [TBL] [Abstract][Full Text] [Related]
16. Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering. Shibasaki S; Kawabata A; Ishii J; Yagi S; Kadonosono T; Kato M; Fukuda N; Kondo A; Ueda M Appl Microbiol Biotechnol; 2007 Jun; 75(4):821-8. PubMed ID: 17345082 [TBL] [Abstract][Full Text] [Related]
17. Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein. Lin KH; Chien MF; Hsieh JL; Huang CC Appl Microbiol Biotechnol; 2010 Jun; 87(2):561-9. PubMed ID: 20174791 [TBL] [Abstract][Full Text] [Related]
18. Surface display of bacterial metallothioneins and a chitin binding domain on Escherichia coli increase cadmium adsorption and cell immobilization. Tafakori V; Ahmadian G; Amoozegar MA Appl Biochem Biotechnol; 2012 Jun; 167(3):462-73. PubMed ID: 22562496 [TBL] [Abstract][Full Text] [Related]
19. Surface display of monkey metallothionein α tandem repeats and EGFP fusion protein on Pseudomonas putida X4 for biosorption and detection of cadmium. He X; Chen W; Huang Q Appl Microbiol Biotechnol; 2012 Sep; 95(6):1605-13. PubMed ID: 22205441 [TBL] [Abstract][Full Text] [Related]
20. Cd2+ accommodation by Saccharomyces cerevisiae. Joho M; Yamanaka C; Murayama T Microbios; 1986; 45(184-185):169-79. PubMed ID: 3526094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]