BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 12898068)

  • 1. Effect of environmental conditions on aggregation and fibril formation of barstar.
    Gast K; Modler AJ; Damaschun H; Kröber R; Lutsch G; Zirwer D; Golbik R; Damaschun G
    Eur Biophys J; 2003 Dec; 32(8):710-23. PubMed ID: 12898068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates.
    Khurana R; Gillespie JR; Talapatra A; Minert LJ; Ionescu-Zanetti C; Millett I; Fink AL
    Biochemistry; 2001 Mar; 40(12):3525-35. PubMed ID: 11297418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of formation of amyloid protofibrils of barstar from soluble oligomers: evidence for multiple steps and lateral association coupled to conformational conversion.
    Kumar S; Mohanty SK; Udgaonkar JB
    J Mol Biol; 2007 Apr; 367(4):1186-204. PubMed ID: 17292913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational prerequisites for formation of amyloid fibrils from histones.
    Munishkina LA; Fink AL; Uversky VN
    J Mol Biol; 2004 Sep; 342(4):1305-24. PubMed ID: 15351653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salt-induced modulation of the pathway of amyloid fibril formation by the mouse prion protein.
    Jain S; Udgaonkar JB
    Biochemistry; 2010 Sep; 49(35):7615-24. PubMed ID: 20712298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible amyloid formation by the p53 tetramerization domain and a cancer-associated mutant.
    Lee AS; Galea C; DiGiammarino EL; Jun B; Murti G; Ribeiro RC; Zambetti G; Schultz CP; Kriwacki RW
    J Mol Biol; 2003 Mar; 327(3):699-709. PubMed ID: 12634062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways.
    Griffin MD; Mok ML; Wilson LM; Pham CL; Waddington LJ; Perugini MA; Howlett GJ
    J Mol Biol; 2008 Jan; 375(1):240-56. PubMed ID: 18005990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light scattering analysis of fibril growth from the amino-terminal fragment beta(1-28) of beta-amyloid peptide.
    Shen CL; Scott GL; Merchant F; Murphy RM
    Biophys J; 1993 Dec; 65(6):2383-95. PubMed ID: 8312477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Existence of different structural intermediates on the fibrillation pathway of human serum albumin.
    Juárez J; Taboada P; Mosquera V
    Biophys J; 2009 Mar; 96(6):2353-70. PubMed ID: 19289061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gammaC-crystallin.
    Wang Y; Petty S; Trojanowski A; Knee K; Goulet D; Mukerji I; King J
    Invest Ophthalmol Vis Sci; 2010 Feb; 51(2):672-8. PubMed ID: 19684009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of ovalbumin into amyloid and non-amyloid fibrils.
    Lara C; Gourdin-Bertin S; Adamcik J; Bolisetty S; Mezzenga R
    Biomacromolecules; 2012 Dec; 13(12):4213-21. PubMed ID: 23098330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis.
    Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE
    J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition.
    Chaudhary AP; Vispute NH; Shukla VK; Ahmad B
    Biochimie; 2017 Jan; 132():75-84. PubMed ID: 27825804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence on solution conditions of aggregation and amyloid formation by an SH3 domain.
    Zurdo J; Guijarro JI; Jiménez JL; Saibil HR; Dobson CM
    J Mol Biol; 2001 Aug; 311(2):325-40. PubMed ID: 11478864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
    Andersen CB; Hicks MR; Vetri V; Vandahl B; Rahbek-Nielsen H; Thøgersen H; Thøgersen IB; Enghild JJ; Serpell LC; Rischel C; Otzen DE
    J Mol Biol; 2010 Apr; 397(4):932-46. PubMed ID: 20156459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the mechanism of aggregation and fibril formation from bovine serum albumin.
    Bhattacharya M; Jain N; Mukhopadhyay S
    J Phys Chem B; 2011 Apr; 115(14):4195-205. PubMed ID: 21417250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the helical structure of the N-terminal region of Plasmodium falciparum merozoite surface protein 2 in fibril formation and membrane interaction.
    Zhang X; Adda CG; Low A; Zhang J; Zhang W; Sun H; Tu X; Anders RF; Norton RS
    Biochemistry; 2012 Feb; 51(7):1380-7. PubMed ID: 22304430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloidogenic potential of alpha-chymotrypsin in different conformational states.
    Rezaei-Ghaleh N; Zweckstetter M; Morshedi D; Ebrahim-Habibi A; Nemat-Gorgani M
    Biopolymers; 2009 Jan; 91(1):28-36. PubMed ID: 18767127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth kinetics of amyloid-like fibrils derived from individual subunits of soy β-conglycinin.
    Wang JM; Yang XQ; Yin SW; Yuan DB; Xia N; Qi JR
    J Agric Food Chem; 2011 Oct; 59(20):11270-7. PubMed ID: 21919519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.