BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12898216)

  • 21. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent.
    Smýkal P; Kalendar R; Ford R; Macas J; Griga M
    Heredity (Edinb); 2009 Aug; 103(2):157-67. PubMed ID: 19384338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes.
    Guermonprez H; Loot C; Casacuberta JM
    Genetics; 2008 Sep; 180(1):83-92. PubMed ID: 18757929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glider and Vision: two new families of miniature inverted-repeat transposable elements in Xenopus laevis genome.
    Lepetit D; Pasquet S; Olive M; Thézé N; Thiébaud P
    Genetica; 2000; 108(2):163-9. PubMed ID: 11138944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus.
    Sun C; Feschotte C; Wu Z; Mueller RL
    BMC Biol; 2015 Jun; 13():38. PubMed ID: 26067596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti.
    Tu Z
    Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7475-80. PubMed ID: 9207116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IS1630 of Mycoplasma fermentans, a novel IS30-type insertion element that targets and duplicates inverted repeats of variable length and sequence during insertion.
    Calcutt MJ; Lavrrar JL; Wise KS
    J Bacteriol; 1999 Dec; 181(24):7597-607. PubMed ID: 10601219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota L.).
    Grzebelus D; Yau YY; Simon PW
    Mol Genet Genomics; 2006 May; 275(5):450-9. PubMed ID: 16482474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bigfoot. a new family of MITE elements characterized from the Medicago genus.
    Charrier B; Foucher F; Kondorosi E; d'Aubenton-Carafa Y; Thermes C; Kondorosi A; Ratet P
    Plant J; 1999 May; 18(4):431-41. PubMed ID: 10406126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MITE
    Adams FG; Brown MH
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct characteristics of loop sequences of two Drosophila foldback transposable elements.
    Brierley HL; Potter SS
    Nucleic Acids Res; 1985 Jan; 13(2):485-500. PubMed ID: 2987798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the repetitive sequences in a 200-kb region around the rice waxy locus: diversity of transposable elements and presence of veiled repetitive sequences.
    Nagano H; Kunii M; Azuma T; Kishima Y; Sano Y
    Genes Genet Syst; 2002 Apr; 77(2):69-79. PubMed ID: 12087189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mobility and generation of mosaic non-autonomous transposons by Tn3-derived inverted-repeat miniature elements (TIMEs).
    Szuplewska M; Ludwiczak M; Lyzwa K; Czarnecki J; Bartosik D
    PLoS One; 2014; 9(8):e105010. PubMed ID: 25121765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Foldback transposable elements in plants.
    Rebatchouk D; Narita JO
    Plant Mol Biol; 1997 Jul; 34(5):831-5. PubMed ID: 9278174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tc4, a Caenorhabditis elegans transposable element with an unusual fold-back structure.
    Yuan JY; Finney M; Tsung N; Horvitz HR
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3334-8. PubMed ID: 1849651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tnat1 and Tnat2 from Arabidopsis thaliana: novel transposable elements with tandem repeat sequences.
    Noma K; Ohtsubo E
    DNA Res; 2000 Feb; 7(1):1-7. PubMed ID: 10718193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A reference genome for pea provides insight into legume genome evolution.
    Kreplak J; Madoui MA; Cápal P; Novák P; Labadie K; Aubert G; Bayer PE; Gali KK; Syme RA; Main D; Klein A; Bérard A; Vrbová I; Fournier C; d'Agata L; Belser C; Berrabah W; Toegelová H; Milec Z; Vrána J; Lee H; Kougbeadjo A; Térézol M; Huneau C; Turo CJ; Mohellibi N; Neumann P; Falque M; Gallardo K; McGee R; Tar'an B; Bendahmane A; Aury JM; Batley J; Le Paslier MC; Ellis N; Warkentin TD; Coyne CJ; Salse J; Edwards D; Lichtenzveig J; Macas J; Doležel J; Wincker P; Burstin J
    Nat Genet; 2019 Sep; 51(9):1411-1422. PubMed ID: 31477930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome organization in Fusarium oxysporum: clusters of class II transposons.
    Hua-Van A; Davière JM; Kaper F; Langin T; Daboussi MJ
    Curr Genet; 2000 May; 37(5):339-47. PubMed ID: 10853772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs.
    Unsal K; Morgan GT
    J Mol Biol; 1995 May; 248(4):812-23. PubMed ID: 7752242
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A transposon-like sequence with short terminal inverted repeats in the nuclear genome of Chlamydomonas reinhardtii.
    Day A
    Plant Mol Biol; 1995 Jun; 28(3):437-42. PubMed ID: 7632914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vege and Mar: two novel hAT MITE families from Drosophila willistoni.
    Holyoake AJ; Kidwell MG
    Mol Biol Evol; 2003 Feb; 20(2):163-7. PubMed ID: 12598681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.