BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 12898219)

  • 1. Mutation of a conserved CDK site converts a metazoan Elongation Factor 1Bbeta subunit into a replacement for yeast eEF1Balpha.
    Pomerening JR; Valente L; Kinzy TG; Jacobs TW
    Mol Genet Genomics; 2003 Sep; 269(6):776-88. PubMed ID: 12898219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity.
    Carr-Schmid A; Valente L; Loik VI; Williams T; Starita LM; Kinzy TG
    Mol Cell Biol; 1999 Aug; 19(8):5257-66. PubMed ID: 10409717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protein-binding N-terminal domain of human translation elongation factor 1Bβ possesses a dynamic α-helical structural organization.
    Bondarchuk TV; Lozhko DM; Shalak VF; Fatalska A; Szczepanowski RH; Dadlez M; Negrutskii BS; El'skaya AV
    Int J Biol Macromol; 2019 Apr; 126():899-907. PubMed ID: 30590147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in a GTP-binding motif of eukaryotic elongation factor 1A reduce both translational fidelity and the requirement for nucleotide exchange.
    Carr-Schmid A; Durko N; Cavallius J; Merrick WC; Kinzy TG
    J Biol Chem; 1999 Oct; 274(42):30297-302. PubMed ID: 10514524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant Translation Elongation Factor 1Bβ Facilitates Potato Virus X (PVX) Infection and Interacts with PVX Triple Gene Block Protein 1.
    Hwang J; Lee S; Lee JH; Kang WH; Kang JH; Kang MY; Oh CS; Kang BC
    PLoS One; 2015; 10(5):e0128014. PubMed ID: 26020533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA.
    Gromadski KB; Schümmer T; Strømgaard A; Knudsen CR; Kinzy TG; Rodnina MV
    J Biol Chem; 2007 Dec; 282(49):35629-37. PubMed ID: 17925388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of nucleotide exchange intermediates in the eEF1A-eEF1Balpha complex.
    Andersen GR; Valente L; Pedersen L; Kinzy TG; Nyborg J
    Nat Struct Biol; 2001 Jun; 8(6):531-4. PubMed ID: 11373622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Balpha.
    Andersen GR; Pedersen L; Valente L; Chatterjee I; Kinzy TG; Kjeldgaard M; Nyborg J
    Mol Cell; 2000 Nov; 6(5):1261-6. PubMed ID: 11106763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for the binding of didemnins to human elongation factor eEF1A and rationale for the potent antitumor activity of these marine natural products.
    Marco E; Martín-Santamaría S; Cuevas C; Gago F
    J Med Chem; 2004 Aug; 47(18):4439-52. PubMed ID: 15317456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli.
    Pérez JM; Siegal G; Kriek J; Hård K; Dijk J; Canters GW; Möller W
    Structure; 1999 Feb; 7(2):217-26. PubMed ID: 10368288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of eukaryotic translation elongation factor 1A (eEF1A) function in actin organization and translation elongation by the guanine nucleotide exchange factor eEF1Balpha.
    Pittman YR; Kandl K; Lewis M; Valente L; Kinzy TG
    J Biol Chem; 2009 Feb; 284(7):4739-47. PubMed ID: 19095653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.
    Trosiuk TV; Shalak VF; Szczepanowski RH; Negrutskii BS; El'skaya AV
    FEBS J; 2016 Feb; 283(3):484-97. PubMed ID: 26587907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A.
    Cans C; Passer BJ; Shalak V; Nancy-Portebois V; Crible V; Amzallag N; Allanic D; Tufino R; Argentini M; Moras D; Fiucci G; Goud B; Mirande M; Amson R; Telerman A
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13892-7. PubMed ID: 14623968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis reveals potential phosphorylation sites in eukaryotic elongation factor 1A that are important for its activity.
    Mateyak MK; He D; Sharma P; Kinzy TG
    FEBS Lett; 2021 Sep; 595(17):2208-2220. PubMed ID: 34293820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast.
    Valouev IA; Fominov GV; Sokolova EE; Smirnov VN; Ter-Avanesyan MD
    BMC Mol Biol; 2009 Jun; 10():60. PubMed ID: 19545407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity.
    Peters HI; Chang YW; Traugh JA
    Eur J Biochem; 1995 Dec; 234(2):550-6. PubMed ID: 8536702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct and biochemical interaction between dopamine D3 receptor and elongation factor-1Bbetagamma.
    Cho DI; Oak MH; Yang HJ; Choi HK; Janssen GM; Kim KM
    Life Sci; 2003 Oct; 73(23):2991-3004. PubMed ID: 14519448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved protein kinases encoded by herpesviruses and cellular protein kinase cdc2 target the same phosphorylation site in eukaryotic elongation factor 1delta.
    Kawaguchi Y; Kato K; Tanaka M; Kanamori M; Nishiyama Y; Yamanashi Y
    J Virol; 2003 Feb; 77(4):2359-68. PubMed ID: 12551973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent overexpression of the subunits of translation elongation factor complex eEF1H in human lung cancer.
    Veremieva M; Kapustian L; Khoruzhenko A; Zakharychev V; Negrutskii B; El'skaya A
    BMC Cancer; 2014 Dec; 14():913. PubMed ID: 25472873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of CDK-activating kinase is dependent on interaction with H-type cyclins in plants.
    Yamaguchi M; Fabian T; Sauter M; Bhalerao RP; Schrader J; Sandberg G; Umeda M; Uchimiya H
    Plant J; 2000 Oct; 24(1):11-20. PubMed ID: 11029700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.