These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 12898263)

  • 1. The optimal locomotion on gradients: walking, running or cycling?
    Ardigò LP; Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Oct; 90(3-4):365-71. PubMed ID: 12898263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hopping locomotion at different gravity: metabolism and mechanics in humans.
    Pavei G; Minetti AE
    J Appl Physiol (1985); 2016 May; 120(10):1223-9. PubMed ID: 26635350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F; Minetti AE
    Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of walking and running: insights from simulated reduced-gravity experiments.
    Farley CT; McMahon TA
    J Appl Physiol (1985); 1992 Dec; 73(6):2709-12. PubMed ID: 1490989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion Mode Affects the Physiological Strain during Exercise at Walk-Run Transition Speed inElderly Men.
    Freire R; Farinatti P; Cunha F; Silva B; Monteiro W
    Int J Sports Med; 2017 Jul; 38(7):515-520. PubMed ID: 28564744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics and optimization of human walking and running: the 2000 Raymond Pearl memorial lecture.
    McNeill Alexander R
    Am J Hum Biol; 2002; 14(5):641-8. PubMed ID: 12203818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
    Abe D; Fukuoka Y; Maeda T; Horiuchi M
    J Physiol Anthropol; 2018 Jun; 37(1):18. PubMed ID: 29914562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transmission efficiency of backward walking at different gradients.
    Minetti AE; Ardigò LP
    Pflugers Arch; 2001 Jul; 442(4):542-6. PubMed ID: 11510887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A feedback-controlled treadmill (treadmill-on-demand) and the spontaneous speed of walking and running in humans.
    Minetti AE; Boldrini L; Brusamolin L; Zamparo P; McKee T
    J Appl Physiol (1985); 2003 Aug; 95(2):838-43. PubMed ID: 12692139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
    Minetti AE; Ardigò LP; Saibene F
    Acta Physiol Scand; 1994 Mar; 150(3):315-23. PubMed ID: 8010138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses.
    Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA
    J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skipping vs. running as the bipedal gait of choice in hypogravity.
    Pavei G; Biancardi CM; Minetti AE
    J Appl Physiol (1985); 2015 Jul; 119(1):93-100. PubMed ID: 25930029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Economical Speed and Energetically Optimal Transition Speed Evaluated by Gross and Net Oxygen Cost of Transport at Different Gradients.
    Abe D; Fukuoka Y; Horiuchi M
    PLoS One; 2015; 10(9):e0138154. PubMed ID: 26383249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological determinants of best performances in human locomotion.
    Capelli C
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):298-307. PubMed ID: 10483799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolic cost of walking on gradients with a waddling gait.
    Nudds RL; Codd JR
    J Exp Biol; 2012 Aug; 215(Pt 15):2579-85. PubMed ID: 22786634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vaulting mechanics successfully predict decrease in walk-run transition speed with incline.
    Hubel TY; Usherwood JR
    Biol Lett; 2013 Apr; 9(2):20121121. PubMed ID: 23325739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of bipedal locomotion on compliant legs.
    Alexander RM
    Philos Trans R Soc Lond B Biol Sci; 1992 Oct; 338(1284):189-98. PubMed ID: 1360684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.