These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12898394)

  • 1. Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi.
    Tanzer MM; Arst HN; Skalchunes AR; Coffin M; Darveaux BA; Heiniger RW; Shuster JR
    Funct Integr Genomics; 2003 Dec; 3(4):160-70. PubMed ID: 12898394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of expressed sequence tag analysis and cDNA microarrays of the filamentous fungus Aspergillus nidulans.
    Sims AH; Robson GD; Hoyle DC; Oliver SG; Turner G; Prade RA; Russell HH; Dunn-Coleman NS; Gent ME
    Fungal Genet Biol; 2004 Feb; 41(2):199-212. PubMed ID: 14732266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation.
    Katz ME; Buckland R; Hunter CC; Todd RB
    Fungal Genet Biol; 2015 Oct; 83():10-18. PubMed ID: 26296599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The VeA regulatory system and its role in morphological and chemical development in fungi.
    Calvo AM
    Fungal Genet Biol; 2008 Jul; 45(7):1053-61. PubMed ID: 18457967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Neurospora crassa cfp promoter drives a carbon source-dependent expression of transgenes in filamentous fungi.
    Temporini ED; Alvarez ME; Mautino MR; Folco HD; Rosa AL
    J Appl Microbiol; 2004; 96(6):1256-64. PubMed ID: 15139917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The GATA factors AREA and AREB together with the co-repressor NMRA, negatively regulate arginine catabolism in Aspergillus nidulans in response to nitrogen and carbon source.
    Macios M; Caddick MX; Weglenski P; Scazzocchio C; Dzikowska A
    Fungal Genet Biol; 2012 Mar; 49(3):189-98. PubMed ID: 22300944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aspergillus nidulans conidiation genes dewA, fluG, and stuA are differentially regulated in early vegetative growth.
    Breakspear A; Momany M
    Eukaryot Cell; 2007 Sep; 6(9):1697-700. PubMed ID: 17630328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanisms and regulation of enzymatic hydrolysis of cellulose in filamentous fungi: classical cases and new models].
    Gutiérrez-Rojas I; Moreno-Sarmiento N; Montoya D
    Rev Iberoam Micol; 2015; 32(1):1-12. PubMed ID: 24607657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid catabolism by an areA-regulated gene encoding an L-amino acid oxidase with broad substrate specificity in Aspergillus nidulans.
    Davis MA; Askin MC; Hynes MJ
    Appl Environ Microbiol; 2005 Jul; 71(7):3551-5. PubMed ID: 16000761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen regulation of virulence in clinically prevalent fungal pathogens.
    Lee IR; Morrow CA; Fraser JA
    FEMS Microbiol Lett; 2013 Aug; 345(2):77-84. PubMed ID: 23701678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of nutrient utilization in filamentous fungi.
    Kerkaert JD; Huberman LB
    Appl Microbiol Biotechnol; 2023 Oct; 107(19):5873-5898. PubMed ID: 37540250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula.
    Seabra AR; Pereira PA; Becker JD; Carvalho HG
    Mol Plant Microbe Interact; 2012 Jul; 25(7):976-92. PubMed ID: 22414438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically structured modeling of protein production in filamentous fungi.
    Agger T; Nielsen J
    Biotechnol Bioeng; 1999; 66(3):164-70. PubMed ID: 10577470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small heat shock proteins, phylogeny in filamentous fungi and expression analyses in Aspergillus nidulans.
    Wu J; Wang M; Zhou L; Yu D
    Gene; 2016 Jan; 575(2 Pt 3):675-9. PubMed ID: 26403724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen catabolite repression in yeasts and filamentous fungi.
    Wiame JM; Grenson M; Arst HN
    Adv Microb Physiol; 1985; 26():1-88. PubMed ID: 2869649
    [No Abstract]   [Full Text] [Related]  

  • 16. Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi.
    Klaubauf S; Narang HM; Post H; Zhou M; Brunner K; Mach-Aigner AR; Mach RL; Heck AJR; Altelaar AFM; de Vries RP
    Fungal Genet Biol; 2014 Nov; 72():73-81. PubMed ID: 25064064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CreA-mediated carbon catabolite repression of beta-galactosidase formation in Aspergillus nidulans is growth rate dependent.
    Ilyés H; Fekete E; Karaffa L; Fekete E; Sándor E; Szentirmai A; Kubicek CP
    FEMS Microbiol Lett; 2004 Jun; 235(1):147-51. PubMed ID: 15158274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans.
    Margelis S; D'Souza C; Small AJ; Hynes MJ; Adams TH; Davis MA
    J Bacteriol; 2001 Oct; 183(20):5826-33. PubMed ID: 11566979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Aspergillus nidulans thaumatin-like cetA gene and evidence for transcriptional repression of pyr4 expression in the cetA-disrupted strain.
    Greenstein S; Shadkchan Y; Jadoun J; Sharon C; Markovich S; Osherov N
    Fungal Genet Biol; 2006 Jan; 43(1):42-53. PubMed ID: 16376592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics.
    Smedsgaard J; Nielsen J
    J Exp Bot; 2005 Jan; 56(410):273-86. PubMed ID: 15618299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.