These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 12898624)
1. Protein stabilisation by compatible solutes: effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A. Faria TQ; Knapp S; Ladenstein R; Maçanita AL; Santos H Chembiochem; 2003 Aug; 4(8):734-41. PubMed ID: 12898624 [TBL] [Abstract][Full Text] [Related]
2. Design of new enzyme stabilizers inspired by glycosides of hyperthermophilic microorganisms. Faria TQ; Mingote A; Siopa F; Ventura R; Maycock C; Santos H Carbohydr Res; 2008 Dec; 343(18):3025-33. PubMed ID: 18822412 [TBL] [Abstract][Full Text] [Related]
3. Cutinase unfolding and stabilization by trehalose and mannosylglycerate. Melo EP; Faria TQ; Martins LO; Gonçalves AM; Cabral JM Proteins; 2001 Mar; 42(4):542-52. PubMed ID: 11170208 [TBL] [Abstract][Full Text] [Related]
4. Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry. Faria TQ; Lima JC; Bastos M; Maçanita AL; Santos H J Biol Chem; 2004 Nov; 279(47):48680-91. PubMed ID: 15347691 [TBL] [Abstract][Full Text] [Related]
5. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Borges N; Ramos A; Raven ND; Sharp RJ; Santos H Extremophiles; 2002 Jun; 6(3):209-16. PubMed ID: 12072956 [TBL] [Abstract][Full Text] [Related]
6. Relationship between protein stabilization and protein rigidification induced by mannosylglycerate. Pais TM; Lamosa P; Garcia-Moreno B; Turner DL; Santos H J Mol Biol; 2009 Nov; 394(2):237-50. PubMed ID: 19748513 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Catanzano F; Graziano G; Capasso S; Barone G Protein Sci; 1997 Aug; 6(8):1682-93. PubMed ID: 9260280 [TBL] [Abstract][Full Text] [Related]
8. Kinetically robust monomeric protein from a hyperthermophile. Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048 [TBL] [Abstract][Full Text] [Related]
9. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059 [TBL] [Abstract][Full Text] [Related]
10. Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B. Arnold U; Ulbrich-Hofmann R Biochemistry; 1997 Feb; 36(8):2166-72. PubMed ID: 9047316 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen exchange in ribonuclease A and ribonuclease S: evidence for residual structure in the unfolded state under native conditions. Neira JL; Sevilla P; Menéndez M; Bruix M; Rico M J Mol Biol; 1999 Jan; 285(2):627-43. PubMed ID: 9878434 [TBL] [Abstract][Full Text] [Related]
12. Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of xylanase A from Streptomyces lividans. Roberge M; Lewis RN; Shareck F; Morosoli R; Kluepfel D; Dupont C; McElhaney RN Proteins; 2003 Feb; 50(2):341-54. PubMed ID: 12486727 [TBL] [Abstract][Full Text] [Related]
13. The observed change in heat capacity accompanying the thermal unfolding of proteins depends on the composition of the solution and on the method employed to change the temperature of unfolding. Liu Y; Sturtevant JM Biochemistry; 1996 Mar; 35(9):3059-62. PubMed ID: 8608146 [TBL] [Abstract][Full Text] [Related]
14. 4-Chlorobutanol induces unusual reversible and irreversible thermal unfolding of ribonuclease A: thermodynamic, kinetic, and conformational characterization. Mehta R; Kundu A; Kishore N Int J Biol Macromol; 2004 Apr; 34(1-2):13-20. PubMed ID: 15178004 [TBL] [Abstract][Full Text] [Related]
15. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate. Kovrigin EL; Cole R; Loria JP Biochemistry; 2003 May; 42(18):5279-91. PubMed ID: 12731869 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamics and mechanism of cutinase stabilization by trehalose. Baptista RP; Pedersen S; Cabrita GJ; Otzen DE; Cabral JM; Melo EP Biopolymers; 2008 Jun; 89(6):538-47. PubMed ID: 18213692 [TBL] [Abstract][Full Text] [Related]
17. I. Study of protein aggregation due to heat denaturation: A structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering. Tsai AM; van Zanten JH; Betenbaugh MJ Biotechnol Bioeng; 1998 Aug; 59(3):273-80. PubMed ID: 10099337 [TBL] [Abstract][Full Text] [Related]
18. Temperature-induced unfolding of ribonuclease A embedded in spherical polyelectrolyte brushes. Wittemann A; Ballauff M Macromol Biosci; 2005 Jan; 5(1):13-20. PubMed ID: 15633159 [TBL] [Abstract][Full Text] [Related]
19. Sorbitol prevents the self-aggregation of unfolded lysozyme leading to and up to 13 degrees C stabilisation of the folded form. Petersen SB; Jonson V; Fojan P; Wimmer R; Pedersen S J Biotechnol; 2004 Nov; 114(3):269-78. PubMed ID: 15522436 [TBL] [Abstract][Full Text] [Related]
20. Mannosylglycerate stabilizes staphylococcal nuclease with restriction of slow β-sheet motions. Pais TM; Lamosa P; Matzapetakis M; Turner DL; Santos H Protein Sci; 2012 Aug; 21(8):1126-37. PubMed ID: 22619184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]