BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12898711)

  • 1. NET1 and HFI1 genes of yeast mediate both chromosome maintenance and mitochondrial rho(-) mutagenesis.
    Koltovaya NA; Guerasimova AS; Tchekhouta IA; Devin AB
    Yeast; 2003 Aug; 20(11):955-71. PubMed ID: 12898711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Participation of SRM5/CDC28, SRM8/NET1, and SRM12/HFI1 genes in checkpoint control in yeast Saccharomyces cerevisiae].
    Kadyshevskaia EIu; Koltovaia NA
    Genetika; 2009 Apr; 45(4):458-70. PubMed ID: 19507699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Isolation and characterization of new nuclear srm gene mutation causing coordinated changes in the maintenance of nuclear and mitochondrial genetic structures in the yeast Saccharomyces].
    Devin AB; Koltovaia NA; Gavrilov BV; Arman IP
    Genetika; 1994 Sep; 30(9):1194-201. PubMed ID: 8001802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations of the CDC28 gene and the radiation sensitivity of Saccharomyces cerevisiae.
    Koltovaya NA; Arman IP; Devin AB
    Yeast; 1998 Jan; 14(2):133-46. PubMed ID: 9483802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [New mutation in Saccharomyces cerevisiae SRM genes and some features of their phenotypic effects].
    Koltovaia NA; Maĭorova ES; Rzianina AV; Gerasimova AS; Devin AB
    Genetika; 2001 Sep; 37(9):1213-24. PubMed ID: 11642124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two new S-phase-specific genes from Saccharomyces cerevisiae.
    Le S; Davis C; Konopka JB; Sternglanz R
    Yeast; 1997 Sep; 13(11):1029-42. PubMed ID: 9290207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Genetic analysis of mitochondrial rho-mutability in Saccharomyces. III. Comparative analysis of the effect of various nuclear srm mutations and disomy for chromosome IV on rho-mutagenesis].
    Devin AB; Koltovaia NA
    Genetika; 1986 Dec; 22(12):2768-74. PubMed ID: 3542711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Analysis of maintenance of redundant genetic structures in the yeast Saccharomyces cerevisiae: disomy and spontaneous mitochondrial rho(-)-mutability].
    Smirnova ME; Arman IP; Devin AB
    Genetika; 1994 Sep; 30(9):1184-93. PubMed ID: 8001801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes required for ionizing radiation resistance in yeast.
    Bennett CB; Lewis LK; Karthikeyan G; Lobachev KS; Jin YH; Sterling JF; Snipe JR; Resnick MA
    Nat Genet; 2001 Dec; 29(4):426-34. PubMed ID: 11726929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The start gene CDC28 and the genetic stability of yeast.
    Devin AB; Prosvirova TYu ; Peshekhonov VT; Chepurnaya OV; Smirnova ME; Koltovaya NA; Troitskaya EN; Arman IP
    Yeast; 1990; 6(3):231-43. PubMed ID: 2190433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Analysis of maintenance of redundant genetic structures in the yeast Saccharomyces cerevisiae: effect of mutations cdc28-srm and srm1].
    Smirnova ME; Arman IP; Devin AB; Peshekhonov VT; Chepurnaia OV; Koltovaia NA; Troitskaia EN
    Genetika; 1995 Apr; 31(4):464-70. PubMed ID: 7607435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genetic analysis of mitochondrial rho-mutability in Saccharomyces. I. Polygenic determination of spontaneous rho-mutability: gene-modifiers and srm mutation].
    Devin AB; Koltovaia NA
    Genetika; 1986 Sep; 22(9):2244-51. PubMed ID: 3533721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetic analysis of mitochondrial rho-mutability in Saccharomyces. IV. Relation between spontaneous rho-mutability and mitotic stability in disomic Saccharomyces cerevisiae].
    Smirnova ME; Zernichenko AN; Eliseenko NN; Devin AB
    Genetika; 1987 Jan; 23(1):41-4. PubMed ID: 3545979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genetic analysis of pleiotropic effects of pho85 mutations in yeast Saccharomyces cerevisiae].
    Sambuk EV; Popova IuG; Fizikova AIu; Padkina MV
    Genetika; 2003 Aug; 39(8):1039-45. PubMed ID: 14515459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes.
    Bourges I; Mucchielli MH; Herbert CJ; Guiard B; Dujardin G; Meunier B
    J Mol Biol; 2009 Apr; 387(5):1081-91. PubMed ID: 19245817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
    Polish JA; Kim JH; Johnston M
    Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Genetic analysis of mitochondrial rho-mutability in Saccharomyces yeasts. V. Isolation and mapping of nuclear mutation srm5, which simultaneously reduces the rho-mutability and mitotic stability of chromosomes].
    Prosvirova TIu; Devin AB
    Genetika; 1988 Sep; 24(9):1586-92. PubMed ID: 3058552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overlapping contributions of Msh1p and putative recombination proteins Cce1p, Din7p, and Mhr1p in large-scale recombination and genome sorting events in the mitochondrial genome of Saccharomyces cerevisiae.
    Mookerjee SA; Sia EA
    Mutat Res; 2006 Mar; 595(1-2):91-106. PubMed ID: 16337661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIM1, a new yeast Saccharomyces cerevisiae gene playing a role in control of spontaneous and induced mutagenesis.
    Kelberg EP; Kovaltsova SV; Alekseev SY; Fedorova IV; Gracheva LM; Evstukhina TA; Korolev VG
    Mutat Res; 2005 Oct; 578(1-2):64-78. PubMed ID: 15885712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae.
    Vujcic M; Shroff M; Singh KK
    Cancer Res; 2007 Oct; 67(20):9740-9. PubMed ID: 17942904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.