These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

677 related articles for article (PubMed ID: 12899260)

  • 1. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ceramic-based multisite electrode arrays for chronic single-neuron recording.
    Moxon KA; Leiser SC; Gerhardt GA; Barbee KA; Chapin JK
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):647-56. PubMed ID: 15072219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications.
    Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An economical multi-channel cortical electrode array for extended periods of recording during behavior.
    Rennaker RL; Ruyle AM; Street SE; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(1):97-105. PubMed ID: 15652622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.
    Lee K; He J; Clement R; Massia S; Kim B
    Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel high channel-count system for acute multisite neuronal recordings.
    Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microelectrode array fabrication by electrical discharge machining and chemical etching.
    Fofonoff TA; Martel SM; Hatsopoulos NG; Donoghue JP; Hunter IW
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):890-5. PubMed ID: 15188855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.