These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 12899621)
1. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells. Papo N; Shai Y Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621 [TBL] [Abstract][Full Text] [Related]
2. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides. Papo N; Shai Y Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073 [TBL] [Abstract][Full Text] [Related]
3. Cell selectivity and anti-inflammatory activity of a Leu/Lys-rich alpha-helical model antimicrobial peptide and its diastereomeric peptides. Wang P; Nan YH; Yang ST; Kang SW; Kim Y; Park IS; Hahm KS; Shin SY Peptides; 2010 Jul; 31(7):1251-61. PubMed ID: 20363271 [TBL] [Abstract][Full Text] [Related]
4. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
5. Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity. Mangoni ML; Papo N; Mignogna G; Andreu D; Shai Y; Barra D; Simmaco M Biochemistry; 2003 Dec; 42(47):14023-35. PubMed ID: 14636071 [TBL] [Abstract][Full Text] [Related]
6. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Mangoni ML; Papo N; Saugar JM; Barra D; Shai Y; Simmaco M; Rivas L Biochemistry; 2006 Apr; 45(13):4266-76. PubMed ID: 16566601 [TBL] [Abstract][Full Text] [Related]
7. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751 [TBL] [Abstract][Full Text] [Related]
8. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action. Avrahami D; Shai Y Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771 [TBL] [Abstract][Full Text] [Related]
9. The relationship between peptide structure and antibacterial activity. Powers JP; Hancock RE Peptides; 2003 Nov; 24(11):1681-91. PubMed ID: 15019199 [TBL] [Abstract][Full Text] [Related]
10. Influence of tryptophan on lipid binding of linear amphipathic cationic antimicrobial peptides. Jin Y; Mozsolits H; Hammer J; Zmuda E; Zhu F; Zhang Y; Aguilar MI; Blazyk J Biochemistry; 2003 Aug; 42(31):9395-405. PubMed ID: 12899626 [TBL] [Abstract][Full Text] [Related]
11. Structure and organization of hemolytic and nonhemolytic diastereomers of antimicrobial peptides in membranes. Hong J; Oren Z; Shai Y Biochemistry; 1999 Dec; 38(51):16963-73. PubMed ID: 10606532 [TBL] [Abstract][Full Text] [Related]
12. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
13. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure-function study. Oren Z; Shai Y Biochemistry; 1997 Feb; 36(7):1826-35. PubMed ID: 9048567 [TBL] [Abstract][Full Text] [Related]
14. Solution structure and cell selectivity of piscidin 1 and its analogues. Lee SA; Kim YK; Lim SS; Zhu WL; Ko H; Shin SY; Hahm KS; Kim Y Biochemistry; 2007 Mar; 46(12):3653-63. PubMed ID: 17328560 [TBL] [Abstract][Full Text] [Related]
15. An orphan dermaseptin from frog skin reversibly assembles to amyloid-like aggregates in a pH-dependent fashion. Gössler-Schöfberger R; Hesser G; Muik M; Wechselberger C; Jilek A FEBS J; 2009 Oct; 276(20):5849-59. PubMed ID: 19765079 [TBL] [Abstract][Full Text] [Related]
16. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Rosenfeld Y; Lev N; Shai Y Biochemistry; 2010 Feb; 49(5):853-61. PubMed ID: 20058937 [TBL] [Abstract][Full Text] [Related]
17. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
18. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Papo N; Shai Y Peptides; 2003 Nov; 24(11):1693-703. PubMed ID: 15019200 [TBL] [Abstract][Full Text] [Related]
19. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Iwasaki T; Ishibashi J; Tanaka H; Sato M; Asaoka A; Taylor D; Yamakawa M Peptides; 2009 Apr; 30(4):660-8. PubMed ID: 19154767 [TBL] [Abstract][Full Text] [Related]
20. Contribution of a central proline in model amphipathic alpha-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action. Yang ST; Lee JY; Kim HJ; Eu YJ; Shin SY; Hahm KS; Kim JI FEBS J; 2006 Sep; 273(17):4040-54. PubMed ID: 16889633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]