BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 12899626)

  • 21. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides.
    Wieprecht T; Dathe M; Epand RM; Beyermann M; Krause E; Maloy WL; MacDonald DL; Bienert M
    Biochemistry; 1997 Oct; 36(42):12869-80. PubMed ID: 9335545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parallel and antiparallel dimers of magainin 2: their interaction with phospholipid membrane and antibacterial activity.
    Mukai Y; Matsushita Y; Niidome T; Hatekeyama T; Aoyag H
    J Pept Sci; 2002 Oct; 8(10):570-7. PubMed ID: 12450326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.
    Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY
    Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D,L-amino acid-containing antimicrobial peptides: a plausible mode of action.
    Avrahami D; Shai Y
    Biochemistry; 2003 Dec; 42(50):14946-56. PubMed ID: 14674771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy.
    Park K; Oh D; Shin SY; Hahm KS; Kim Y
    Biochem Biophys Res Commun; 2002 Jan; 290(1):204-12. PubMed ID: 11779154
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2004 Jun; 43(21):6393-403. PubMed ID: 15157073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane translocation mechanism of the antimicrobial peptide buforin 2.
    Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K
    Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggregation and membrane permeabilizing properties of designed histidine-containing cationic linear peptide antibiotics.
    Marquette A; Mason AJ; Bechinger B
    J Pept Sci; 2008 Apr; 14(4):488-95. PubMed ID: 18085719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity.
    Chou HT; Wen HW; Kuo TY; Lin CC; Chen WJ
    Peptides; 2010 Oct; 31(10):1811-20. PubMed ID: 20600422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution structure of a novel tryptophan-rich peptide with bidirectional antimicrobial activity.
    Wei SY; Wu JM; Kuo YY; Chen HL; Yip BS; Tzeng SR; Cheng JW
    J Bacteriol; 2006 Jan; 188(1):328-34. PubMed ID: 16352849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions of KLA amphipathic model peptides with lipid monolayers.
    Erbe A; Kerth A; Dathe M; Blume A
    Chembiochem; 2009 Dec; 10(18):2884-92. PubMed ID: 19877001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream.
    Mason AJ; Bertani P; Moulay G; Marquette A; Perrone B; Drake AF; Kichler A; Bechinger B
    Biochemistry; 2007 Dec; 46(51):15175-87. PubMed ID: 18052076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship of membrane curvature to the formation of pores by magainin 2.
    Matsuzaki K; Sugishita K; Ishibe N; Ueha M; Nakata S; Miyajima K; Epand RM
    Biochemistry; 1998 Aug; 37(34):11856-63. PubMed ID: 9718308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues.
    Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY
    Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers.
    Strandberg E; Kanithasen N; Tiltak D; Bürck J; Wadhwani P; Zwernemann O; Ulrich AS
    Biochemistry; 2008 Feb; 47(8):2601-16. PubMed ID: 18220419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities.
    Yang ST; Shin SY; Hahm KS; Kim JI
    Int J Antimicrob Agents; 2006 Apr; 27(4):325-30. PubMed ID: 16563706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective toxicity of antimicrobial peptide S-thanatin on bacteria.
    Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T
    Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA.
    Hsu CH; Chen C; Jou ML; Lee AY; Lin YC; Yu YP; Huang WT; Wu SH
    Nucleic Acids Res; 2005; 33(13):4053-64. PubMed ID: 16034027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.