These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12899689)

  • 1. Diversity, taxonomy and evolution of medium-chain dehydrogenase/reductase superfamily.
    Riveros-Rosas H; Julián-Sánchez A; Villalobos-Molina R; Pardo JP; Piña E
    Eur J Biochem; 2003 Aug; 270(16):3309-34. PubMed ID: 12899689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medium- and short-chain dehydrogenase/reductase gene and protein families : the MDR superfamily.
    Persson B; Hedlund J; Jörnvall H
    Cell Mol Life Sci; 2008 Dec; 65(24):3879-94. PubMed ID: 19011751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdivision of the MDR superfamily of medium-chain dehydrogenases/reductases through iterative hidden Markov model refinement.
    Hedlund J; Jörnvall H; Persson B
    BMC Bioinformatics; 2010 Oct; 11():534. PubMed ID: 20979641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatic and enzymatic characterization of the MAPEG superfamily.
    Bresell A; Weinander R; Lundqvist G; Raza H; Shimoji M; Sun TH; Balk L; Wiklund R; Eriksson J; Jansson C; Persson B; Jakobsson PJ; Morgenstern R
    FEBS J; 2005 Apr; 272(7):1688-703. PubMed ID: 15794756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands.
    Radauer C; Lackner P; Breiteneder H
    BMC Evol Biol; 2008 Oct; 8():286. PubMed ID: 18922149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary genomics of the HAD superfamily: understanding the structural adaptations and catalytic diversity in a superfamily of phosphoesterases and allied enzymes.
    Burroughs AM; Allen KN; Dunaway-Mariano D; Aravind L
    J Mol Biol; 2006 Sep; 361(5):1003-34. PubMed ID: 16889794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns.
    Moummou H; Kallberg Y; Tonfack LB; Persson B; van der Rest B
    BMC Plant Biol; 2012 Nov; 12():219. PubMed ID: 23167570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases.
    Tkaczuk KL; Dunin-Horkawicz S; Purta E; Bujnicki JM
    BMC Bioinformatics; 2007 Mar; 8():73. PubMed ID: 17338813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes.
    Gaona-López C; Julián-Sánchez A; Riveros-Rosas H
    PLoS One; 2016; 11(11):e0166851. PubMed ID: 27893862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution and classification of P-loop kinases and related proteins.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2003 Oct; 333(4):781-815. PubMed ID: 14568537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models.
    Kallberg Y; Oppermann U; Persson B
    FEBS J; 2010 May; 277(10):2375-86. PubMed ID: 20423462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of prokaryotic SPFH proteins.
    Hinderhofer M; Walker CA; Friemel A; Stuermer CA; Möller HM; Reuter A
    BMC Evol Biol; 2009 Jan; 9():10. PubMed ID: 19138386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel scenario for the evolution of haem-copper oxygen reductases.
    Pereira MM; Santana M; Teixeira M
    Biochim Biophys Acta; 2001 Jun; 1505(2-3):185-208. PubMed ID: 11334784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution of the protein kinase-like superfamily.
    Scheeff ED; Bourne PE
    PLoS Comput Biol; 2005 Oct; 1(5):e49. PubMed ID: 16244704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein superfamily evolution and the last universal common ancestor (LUCA).
    Ranea JA; Sillero A; Thornton JM; Orengo CA
    J Mol Evol; 2006 Oct; 63(4):513-25. PubMed ID: 17021929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic analysis of the chromate ion transporter (CHR) superfamily.
    Díaz-Pérez C; Cervantes C; Campos-García J; Julián-Sánchez A; Riveros-Rosas H
    FEBS J; 2007 Dec; 274(23):6215-27. PubMed ID: 17986256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic trans-genomic comparison of protein kinases between Arabidopsis and Saccharomyces cerevisiae.
    Wang D; Harper JF; Gribskov M
    Plant Physiol; 2003 Aug; 132(4):2152-65. PubMed ID: 12913170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer.
    Lin Z; Kong H; Nei M; Ma H
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10328-10333. PubMed ID: 16798872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism.
    Aravind L; Iyer LM; Anantharaman V
    Genome Biol; 2003; 4(10):R64. PubMed ID: 14519199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity.
    Tararina MA; Allen KN
    J Mol Biol; 2020 May; 432(10):3269-3288. PubMed ID: 32198115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.