BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 12899881)

  • 21. Embryo aberrations in sea ice amphipod Gammarus wilkitzkii exposed to water soluble fraction of oil.
    Camus L; Olsen GH
    Mar Environ Res; 2008 Jul; 66(1):221-2. PubMed ID: 18423572
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational application of chemicals in response to oil spills may reduce environmental damage.
    Tamis JE; Jongbloed RH; Karman CC; Koops W; Murk AJ
    Integr Environ Assess Manag; 2012 Apr; 8(2):231-41. PubMed ID: 21853522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effectiveness of a chemical herder in association with in-situ burning of oil spills in ice-infested water.
    van Gelderen L; Fritt-Rasmussen J; Jomaas G
    Mar Pollut Bull; 2017 Feb; 115(1-2):345-351. PubMed ID: 28003056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of climate change and seasonal trends on the fate of Arctic oil spills.
    Nordam T; Dunnebier DAE; Beegle-Krause CJ; Reed M; Slagstad D
    Ambio; 2017 Dec; 46(Suppl 3):442-452. PubMed ID: 29067639
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical simulation of multiphase oil behaviors in ice-covered nearshore water.
    Raznahan M; Li SS; Wang Z; Boufadel M; Geng X; An C
    J Contam Hydrol; 2022 Dec; 251():104069. PubMed ID: 36095968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular energy allocation in the Arctic sea ice amphipod Gammarus wilkitzkii exposed to the water soluble fractions of oil.
    Olsen GH; Carroll J; Sva E; Camus L
    Mar Environ Res; 2008 Jul; 66(1):213-4. PubMed ID: 18381222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robotic swarm concept for efficient oil spill confrontation.
    Kakalis NM; Ventikos Y
    J Hazard Mater; 2008 Jun; 154(1-3):880-7. PubMed ID: 18077087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of dissolution, evaporation, and photooxidation on crude oil chemical composition, dielectric properties and its radar signature in the Arctic environment.
    Saltymakova D; Desmond DS; Isleifson D; Firoozy N; Neusitzer TD; Xu Z; Lemes M; Barber DG; Stern GA
    Mar Pollut Bull; 2020 Feb; 151():110629. PubMed ID: 31753562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radarsat observations and forecasting of oil slick trajectory movements.
    Marghany M
    J Environ Sci (China); 2004; 16(1):44-8. PubMed ID: 14971450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recruitment and survival of immature seabirds in relation to oil spills and climate variability.
    Votier SC; Birkhead TR; Oro D; Trinder M; Grantham MJ; Clark JA; McCleery RH; Hatchwell BJ
    J Anim Ecol; 2008 Sep; 77(5):974-83. PubMed ID: 18624739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of chemical dispersant effectiveness in a wave tank under regular non-breaking and breaking wave conditions.
    Li Z; Lee K; King T; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2008 May; 56(5):903-12. PubMed ID: 18325540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The movement of oil under non-breaking waves.
    Boufadel MC; Bechtel RD; Weaver J
    Mar Pollut Bull; 2006 Sep; 52(9):1056-65. PubMed ID: 16554074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe.
    Chapman H; Purnell K; Law RJ; Kirby MF
    Mar Pollut Bull; 2007 Jul; 54(7):827-38. PubMed ID: 17499814
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An LNG release, transport, and fate model system for marine spills.
    Spaulding ML; Swanson JC; Jayko K; Whittier N
    J Hazard Mater; 2007 Feb; 140(3):488-503. PubMed ID: 17110025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in Greenland ice sheet elevation attributed primarily to snow accumulation variability.
    McConnell JR; Arthern RJ; Mosley-Thompson E; Davis CH; Bales RC; Thomas R; Burkhart JF; Kyne JD
    Nature; 2000 Aug; 406(6798):877-9. PubMed ID: 10972286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impurities in snowpacks.
    Sommerfeld RA
    Environ Monit Assess; 1989 Apr; 12(1):66. PubMed ID: 24249066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crude oil plus dispersant: always a boon or bane?
    Otitoloju AA
    Ecotoxicol Environ Saf; 2005 Feb; 60(2):198-202. PubMed ID: 15546636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating crude oil chemical dispersion efficacy in a flow-through wave tank under regular non-breaking wave and breaking wave conditions.
    Li Z; Lee K; King T; Boufadel MC; Venosa AD
    Mar Pollut Bull; 2009 May; 58(5):735-44. PubMed ID: 19157465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical interactions with snow: understanding the behavior and fate of semi-volatile organic compounds in snow.
    Herbert BM; Villa S; Halsall CJ
    Ecotoxicol Environ Saf; 2006 Jan; 63(1):3-16. PubMed ID: 16038975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.