BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12900181)

  • 1. Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study.
    Ursino M; Giulioni M
    Med Eng Phys; 2003 Oct; 25(8):655-66. PubMed ID: 12900181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis.
    Liu Y; Birch AA; Allen R
    Med Eng Phys; 2003 Oct; 25(8):647-53. PubMed ID: 12900180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure.
    Behrens A; Lenfeldt N; Ambarki K; Malm J; Eklund A; Koskinen LO
    Neurosurgery; 2010 Jun; 66(6):1050-7. PubMed ID: 20495421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study.
    Giulioni M; Ursino M
    Neurosurgery; 1996 Nov; 39(5):1005-14; discussion 1014-5. PubMed ID: 8905758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation.
    Richards HK; Czosnyka M; Whitehouse H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():229-32. PubMed ID: 9779192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP).
    Bellner J; Romner B; Reinstrup P; Kristiansson KA; Ryding E; Brandt L
    Surg Neurol; 2004 Jul; 62(1):45-51; discussion 51. PubMed ID: 15226070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Pressure Reactivity and Pulse Amplitude Indices against the Lower Limit of Autoregulation, Part I: Experimental Intracranial Hypertension.
    Zeiler FA; Donnelly J; Calviello L; Lee JK; Smielewski P; Brady K; Kim DJ; Czosnyka M
    J Neurotrauma; 2018 Dec; 35(23):2803-2811. PubMed ID: 29978744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations.
    Hu K; Peng CK; Czosnyka M; Zhao P; Novak V
    Cardiovasc Eng; 2008 Mar; 8(1):60-71. PubMed ID: 18080758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcranial Doppler Non-invasive Assessment of Intracranial Pressure, Autoregulation of Cerebral Blood Flow and Critical Closing Pressure during Orthotopic Liver Transplant.
    Cardim D; Robba C; Schmidt E; Schmidt B; Donnelly J; Klinck J; Czosnyka M
    Ultrasound Med Biol; 2019 Jun; 45(6):1435-1445. PubMed ID: 30952467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship Between Brain Pulsatility and Cerebral Perfusion Pressure: Replicated Validation Using Different Drivers of CPP Change.
    Calviello LA; de Riva N; Donnelly J; Czosnyka M; Smielewski P; Menon DK; Zeiler FA
    Neurocrit Care; 2017 Dec; 27(3):392-400. PubMed ID: 28547321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links.
    Czosnyka M; Brady K; Reinhard M; Smielewski P; Steiner LA
    Neurocrit Care; 2009; 10(3):373-86. PubMed ID: 19127448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow.
    Ursino M
    Comput Biomed Res; 1990 Dec; 23(6):542-59. PubMed ID: 2276264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noninvasive monitoring of cerebral perfusion pressure in patients with acute liver failure using transcranial doppler ultrasonography.
    Aggarwal S; Brooks DM; Kang Y; Linden PK; Patzer JF
    Liver Transpl; 2008 Jul; 14(7):1048-57. PubMed ID: 18581484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury.
    Radolovich DK; Aries MJ; Castellani G; Corona A; Lavinio A; Smielewski P; Pickard JD; Czosnyka M
    Neurocrit Care; 2011 Dec; 15(3):379-86. PubMed ID: 21805216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study.
    Lee JH; Kelly DF; Oertel M; McArthur DL; Glenn TC; Vespa P; Boscardin WJ; Martin NA
    J Neurosurg; 2001 Aug; 95(2):222-32. PubMed ID: 11780891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining cerebral perfusion pressure thresholds in severe head trauma.
    Lewis S; Wong M; Myburgh J; Reilly P
    Acta Neurochir Suppl; 1998; 71():174-6. PubMed ID: 9779177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental aspects of cerebrospinal hemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation.
    Nelson RJ; Czosnyka M; Pickard JD; Maksymowicz W; Perry S; Martin JL; Lovick AH
    Neurosurgery; 1992 Oct; 31(4):705-9; discussion 709-10. PubMed ID: 1407456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linearity and non-linearity in cerebral hemodynamics.
    Giller CA; Mueller M
    Med Eng Phys; 2003 Oct; 25(8):633-46. PubMed ID: 12900179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury.
    Chan KH; Miller JD; Dearden NM; Andrews PJ; Midgley S
    J Neurosurg; 1992 Jul; 77(1):55-61. PubMed ID: 1607972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.