BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12900405)

  • 1. Kinetics of the superoxide reductase catalytic cycle.
    Emerson JP; Coulter ED; Phillips RS; Kurtz DM
    J Biol Chem; 2003 Oct; 278(41):39662-8. PubMed ID: 12900405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and mechanism of superoxide reduction by two-iron superoxide reductase from Desulfovibrio vulgaris.
    Emerson JP; Coulter ED; Cabelli DE; Phillips RS; Kurtz DM
    Biochemistry; 2002 Apr; 41(13):4348-57. PubMed ID: 11914081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin.
    Auchère F; Sikkink R; Cordas C; Raleiras P; Tavares P; Moura I; Moura JJ
    J Biol Inorg Chem; 2004 Oct; 9(7):839-49. PubMed ID: 15328557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New spectroscopic and electrochemical insights on a class I superoxide reductase: evidence for an intramolecular electron-transfer pathway.
    Folgosa F; Cordas CM; Santos JA; Pereira AS; Moura JJ; Tavares P; Moura I
    Biochem J; 2011 Sep; 438(3):485-94. PubMed ID: 21682694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics studies of the superoxide-mediated electron transfer reactions between rubredoxin-type proteins and superoxide reductases.
    Auchère F; Pauleta SR; Tavares P; Moura I; Moura JJ
    J Biol Inorg Chem; 2006 Jun; 11(4):433-44. PubMed ID: 16544159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic characterization of the [Fe(His)(4)(Cys)] site in 2Fe-superoxide reductase from Desulfovibrio vulgaris.
    Clay MD; Emerson JP; Coulter ED; Kurtz DM; Johnson MK
    J Biol Inorg Chem; 2003 Jul; 8(6):671-82. PubMed ID: 12764688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An engineered two-iron superoxide reductase lacking the [Fe(SCys)4] site retains its catalytic properties in vitro and in vivo.
    Emerson JP; Cabelli DE; Kurtz DM
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3802-7. PubMed ID: 12637682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin.
    Rodrigues JV; Saraiva LM; Abreu IA; Teixeira M; Cabelli DE
    J Biol Inorg Chem; 2007 Feb; 12(2):248-56. PubMed ID: 17066300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies.
    Clay MD; Yang TC; Jenney FE; Kung IY; Cosper CA; Krishnan R; Kurtz DM; Adams MW; Hoffman BM; Johnson MK
    Biochemistry; 2006 Jan; 45(2):427-38. PubMed ID: 16401073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermolecular electron transfer in two-iron superoxide reductase: a putative role for the desulforedoxin center as an electron donor to the iron active site.
    Bonnot F; Duval S; Lombard M; Valton J; Houée-Levin C; Nivière V
    J Biol Inorg Chem; 2011 Aug; 16(6):889-98. PubMed ID: 21590471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system.
    Lumppio HL; Shenvi NV; Summers AO; Voordouw G; Kurtz DM
    J Bacteriol; 2001 Jan; 183(1):101-8. PubMed ID: 11114906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced superoxide and hydrogen peroxide detection in biological assays.
    Rodrigues JV; Gomes CM
    Free Radic Biol Med; 2010 Jul; 49(1):61-6. PubMed ID: 20332022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of Desulfovibrio vulgaris two-iron superoxide reductase with superoxide: insights from stopped-flow spectrophotometry.
    Huang VW; Emerson JP; Kurtz DM
    Biochemistry; 2007 Oct; 46(40):11342-51. PubMed ID: 17854204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic microbes: oxygen detoxification without superoxide dismutase.
    Jenney FE; Verhagen MF; Cui X; Adams MW
    Science; 1999 Oct; 286(5438):306-9. PubMed ID: 10514376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii.
    Mathé C; Nivière V; Houée-Levin C; Mattioli TA
    Biophys Chem; 2006 Jan; 119(1):38-48. PubMed ID: 16084640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus.
    Grunden AM; Jenney FE; Ma K; Ji M; Weinberg MV; Adams MW
    Appl Environ Microbiol; 2005 Mar; 71(3):1522-30. PubMed ID: 15746356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris hildenborough under microaerophilic conditions.
    Wildschut JD; Lang RM; Voordouw JK; Voordouw G
    J Bacteriol; 2006 Sep; 188(17):6253-60. PubMed ID: 16923892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD; Jenney FE; Hagedoorn PL; George GN; Adams MW; Johnson MK
    J Am Chem Soc; 2002 Feb; 124(5):788-805. PubMed ID: 11817955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide reductase: different interaction modes with its two redox partners.
    Almeida RM; Turano P; Moura I; Moura JJ; Pauleta SR
    Chembiochem; 2013 Sep; 14(14):1858-66. PubMed ID: 24038730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.