These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12901018)

  • 21. [Kinetic analysis of behavior of chemotactic bacterial population at the interface of two media].
    Zaval'skiĭ LIu
    Biofizika; 2003; 48(2):273-80. PubMed ID: 12723354
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological role of the novel salicylaldehyde dehydrogenase NahV in mineralization of naphthalene by Pseudomonas putida ND6.
    Li S; Li X; Zhao H; Cai B
    Microbiol Res; 2011 Dec; 166(8):643-53. PubMed ID: 21376550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence of indigenous NAH plasmid of naphthalene degrading Pseudomonas putida PpG7 strain implicated in limonin degradation.
    Ghosh M; Ganguli A; Mallik M
    J Microbiol; 2006 Oct; 44(5):473-9. PubMed ID: 17082740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate.
    Samanta SK; Jain RK
    Can J Microbiol; 2000 Jan; 46(1):1-6. PubMed ID: 10696467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The construction and monitoring of genetically marked, plasmid-containing, naphthalene-degrading strains in soil].
    Filonov AE; Akhmetov LI; Puntus IF; Esikova TZ; Gafarov AB; Izmalkova TIu; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(4):526-32. PubMed ID: 16211857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemoeffectors decrease the deposition of chemotactic bacteria during transport in porous media.
    Velasco-Casal P; Wick LY; Ortega-Calvo JJ
    Environ Sci Technol; 2008 Feb; 42(4):1131-7. PubMed ID: 18351083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effect of transposons on expression of genes for naphthalene biodegradation in Pseudomonas putida BS202(NPL-1) and derivative strains].
    Sokolov SL; Kosheleva IA; Filonov AE; Boronin AM
    Mikrobiologiia; 2005; 74(1):79-86. PubMed ID: 15835782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7.
    Lee K; Park JW; Ahn IS
    J Hazard Mater; 2003 Dec; 105(1-3):157-67. PubMed ID: 14623425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete sequence and genetic organization of pDTG1, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4.
    Dennis JJ; Zylstra GJ
    J Mol Biol; 2004 Aug; 341(3):753-68. PubMed ID: 15288784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor.
    Collina E; Bestetti G; Di Gennaro P; Franzetti A; Gugliersi F; Lasagni M; Pitea D
    Environ Int; 2005 Feb; 31(2):167-71. PubMed ID: 15661278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the biodegradation of aromatic hydrocarbons by monitoring of several functional genes.
    Piskonen R; Nyyssönen M; Itävaara M
    Biodegradation; 2008 Nov; 19(6):883-95. PubMed ID: 18425625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86.
    Basu A; Apte SK; Phale PS
    Appl Environ Microbiol; 2006 Mar; 72(3):2226-30. PubMed ID: 16517677
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor.
    Werlen C; Jaspers MC; van der Meer JR
    Appl Environ Microbiol; 2004 Jan; 70(1):43-51. PubMed ID: 14711624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of LB broth, naphthalene concentration, and acetone on the naphthalene degradation activities by Pseudomonas putida G7.
    Chang SY; Liu XG; Ren BQ; Liu B; Zhang K; Zhang H; Wan Y
    Water Environ Res; 2015 Jan; 87(1):61-7. PubMed ID: 25630128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Derivation of the Tn5-induced mutants of the plasmid-containing naphthalene- and salicylate-degrading strains of Pseudomonas putida BS394(pBS216) and the inhibition of their growth on different substrates by low temperatures].
    Grishchenkov VG; Radzion AA; Medvedev PA; Balina MI; Boronin AM
    Mikrobiologiia; 2004; 73(3):430-2. PubMed ID: 15315239
    [No Abstract]   [Full Text] [Related]  

  • 36. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6.
    Li W; Shi J; Wang X; Han Y; Tong W; Ma L; Liu B; Cai B
    Gene; 2004 Jul; 336(2):231-40. PubMed ID: 15246534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The role of mineral phosphorus compounds in naphthalene biodegradation by Pseudomonas putida].
    Puntus IF; Ryazanova LP; Zvonarev AN; Funtikova TV; Kulakovskaya TV
    Prikl Biokhim Mikrobiol; 2015; 51(2):198-205. PubMed ID: 26027355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice-Boltzmann model for bacterial chemotaxis.
    Hilpert M
    J Math Biol; 2005 Sep; 51(3):302-32. PubMed ID: 15868199
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous-flow capillary assay for measuring bacterial chemotaxis.
    Law AM; Aitken MD
    Appl Environ Microbiol; 2005 Jun; 71(6):3137-43. PubMed ID: 15933013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemotaxis of Pseudomonas stutzeri OX1 and Burkholderia cepacia G4 toward chlorinated ethenes.
    Vardar G; Barbieri P; Wood TK
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):696-701. PubMed ID: 15290136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.