BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 12901936)

  • 1. The first releases of transgenic mosquitoes: an argument for the sterile insect technique.
    Benedict MQ; Robinson AS
    Trends Parasitol; 2003 Aug; 19(8):349-55. PubMed ID: 12901936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing the buzz: a new approach to population suppression of mosquitoes by feeding larvae double-stranded RNAs.
    Whyard S; Erdelyan CN; Partridge AL; Singh AD; Beebe NW; Capina R
    Parasit Vectors; 2015 Feb; 8():96. PubMed ID: 25880645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks.
    Seirin Lee S; Baker RE; Gaffney EA; White SM
    J Theor Biol; 2013 Aug; 331():78-90. PubMed ID: 23608633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases.
    Tabachnick WJ
    J Med Entomol; 2003 Sep; 40(5):597-606. PubMed ID: 14596272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic technologies to induce sterility.
    Catteruccia F; Crisanti A; Wimmer EA
    Malar J; 2009 Nov; 8 Suppl 2(Suppl 2):S7. PubMed ID: 19917077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing transgenic Anopheles mosquitoes for the sterile insect technique.
    Nolan T; Papathanos P; Windbichler N; Magnusson K; Benton J; Catteruccia F; Crisanti A
    Genetica; 2011 Jan; 139(1):33-9. PubMed ID: 20821345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes.
    Bernardini F; Haghighat-Khah RE; Galizi R; Hammond AM; Nolan T; Crisanti A
    Parasit Vectors; 2018 Dec; 11(Suppl 2):660. PubMed ID: 30583738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infertility resulting from transgenic I-PpoI male Anopheles gambiae in large cage trials.
    Klein TA; Windbichler N; Deredec A; Burt A; Benedict MQ
    Pathog Glob Health; 2012 Mar; 106(1):20-31. PubMed ID: 22595271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field performance of engineered male mosquitoes.
    Harris AF; Nimmo D; McKemey AR; Kelly N; Scaife S; Donnelly CA; Beech C; Petrie WD; Alphey L
    Nat Biotechnol; 2011 Oct; 29(11):1034-7. PubMed ID: 22037376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic elimination of dengue vector mosquitoes.
    Wise de Valdez MR; Nimmo D; Betz J; Gong HF; James AA; Alphey L; Black WC
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4772-5. PubMed ID: 21383140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mosquito transgenesis: what is the fitness cost?
    Marrelli MT; Moreira CK; Kelly D; Alphey L; Jacobs-Lorena M
    Trends Parasitol; 2006 May; 22(5):197-202. PubMed ID: 16564223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive.
    Okamoto KW; Robert MA; Gould F; Lloyd AL
    PLoS Negl Trop Dis; 2014 Jul; 8(7):e2827. PubMed ID: 24992213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ecology of genetically modified mosquitoes.
    Scott TW; Takken W; Knols BG; Boëte C
    Science; 2002 Oct; 298(5591):117-9. PubMed ID: 12364785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing fitness costs for transgenic Aedes aegypti expressing the GFP marker and transposase genes.
    Irvin N; Hoddle MS; O'Brochta DA; Carey B; Atkinson PW
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):891-6. PubMed ID: 14711992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae.
    Volohonsky G; Hopp AK; Saenger M; Soichot J; Scholze H; Boch J; Blandin SA; Marois E
    PLoS Pathog; 2017 Jan; 13(1):e1006113. PubMed ID: 28095489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes.
    Rasgon JL; Scott TW
    Insect Biochem Mol Biol; 2004 Jul; 34(7):707-13. PubMed ID: 15242712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mosquito engineering. Building a disease-fighting mosquito.
    Enserink M
    Science; 2000 Oct; 290(5491):440-1. PubMed ID: 11183760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient population dynamics of mosquitoes during sterile male releases: modelling mating behaviour and perturbations of life history parameters.
    Stone CM
    PLoS One; 2013; 8(9):e76228. PubMed ID: 24086715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the spread and persistence of genetically modified dominant sterile male mosquitoes.
    Ickowicz A; Foster SD; Hosack GR; Hayes KR
    Parasit Vectors; 2021 Sep; 14(1):480. PubMed ID: 34530904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito Anopheles coluzzii.
    Ekechukwu NE; Baeshen R; Traorè SF; Coulibaly M; Diabate A; Catteruccia F; Tripet F
    G3 (Bethesda); 2015 Oct; 5(12):2693-709. PubMed ID: 26497140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.