BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 12902240)

  • 1. Effects of cultivation conditions on folate production by lactic acid bacteria.
    Sybesma W; Starrenburg M; Tijsseling L; Hoefnagel MH; Hugenholtz J
    Appl Environ Microbiol; 2003 Aug; 69(8):4542-8. PubMed ID: 12902240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of lactic acid bacteria producing folate and their potential use as adjunct cultures for cheese bio-enrichment.
    Albano C; Silvetti T; Brasca M
    FEMS Microbiol Lett; 2020 May; 367(9):. PubMed ID: 32275307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of cadaverine production by foodborne pathogens in the presence of Lactobacillus, Lactococcus, and Streptococcus spp.
    Kuley E; Balıkcı E; Özoğul I; Gökdogan S; Ozoğul F
    J Food Sci; 2012 Dec; 77(12):M650-8. PubMed ID: 22853653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH.
    Siegumfeldt H; Björn Rechinger K; Jakobsen M
    Appl Environ Microbiol; 2000 Jun; 66(6):2330-5. PubMed ID: 10831407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of selected lactic acid bacteria on growth of Staphylococcus aureus and production of enterotoxin.
    Haines WC; Harmon LG
    Appl Microbiol; 1973 Mar; 25(3):436-41. PubMed ID: 4633430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis.
    Wegkamp A; van Oorschot W; de Vos WM; Smid EJ
    Appl Environ Microbiol; 2007 Apr; 73(8):2673-81. PubMed ID: 17308179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them.
    Simova E; Simov Z; Beshkova D; Frengova G; Dimitrov Z; Spasov Z
    Int J Food Microbiol; 2006 Mar; 107(2):112-23. PubMed ID: 16297479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic organization of lactic acid bacteria.
    Davidson BE; Kordias N; Dobos M; Hillier AJ
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):161-83. PubMed ID: 8879406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased production of folate by metabolic engineering of Lactococcus lactis.
    Sybesma W; Starrenburg M; Kleerebezem M; Mierau I; de Vos WM; Hugenholtz J
    Appl Environ Microbiol; 2003 Jun; 69(6):3069-76. PubMed ID: 12788700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citric acid metabolism in hetero- and homofermentative lactic acid bacteria.
    Drinan DF; Robin S; Cogan TM
    Appl Environ Microbiol; 1976 Apr; 31(4):481-6. PubMed ID: 5054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, characterisation and identification of lactic acid bacteria from bushera: a Ugandan traditional fermented beverage.
    Muyanja CM; Narvhus JA; Treimo J; Langsrud T
    Int J Food Microbiol; 2003 Feb; 80(3):201-10. PubMed ID: 12494920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of folate-consuming Lactobacillus gasseri into a folate producer.
    Wegkamp A; Starrenburg M; de Vos WM; Hugenholtz J; Sybesma W
    Appl Environ Microbiol; 2004 May; 70(5):3146-8. PubMed ID: 15128580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria.
    Pastink MI; Teusink B; Hols P; Visser S; de Vos WM; Hugenholtz J
    Appl Environ Microbiol; 2009 Jun; 75(11):3627-33. PubMed ID: 19346354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.
    Larsen N; Werner BB; Vogensen FK; Jespersen L
    J Dairy Sci; 2015 Mar; 98(3):1640-51. PubMed ID: 25597975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk.
    Laiño JE; Juarez del Valle M; Savoy de Giori G; LeBlanc JG
    Int J Food Microbiol; 2014 Nov; 191():10-6. PubMed ID: 25217720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain.
    Harris LJ; Fleming HP; Klaenhammer TR
    Appl Environ Microbiol; 1992 May; 58(5):1484-9. PubMed ID: 1622215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance.
    Konings WN; Lolkema JS; Bolhuis H; van Veen HW; Poolman B; Driessen AJ
    Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):117-28. PubMed ID: 9049023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide utilization by Lactococcus lactis and Leuconostoc mesenteroides.
    Foucaud C; Hemme D; Desmazeaud M
    Lett Appl Microbiol; 2001 Jan; 32(1):20-5. PubMed ID: 11169036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life.
    Kim MJ; Lee HW; Lee ME; Roh SW; Kim TW
    J Microbiol; 2019 Jun; 57(6):479-484. PubMed ID: 31073899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory and stimulatory effects of cumin, oregano and their essential oils on growth and acid production of Lactobacillus plantarum and Leuconostoc mesenteroides.
    Kivanç M; Akgül A; Doğan A
    Int J Food Microbiol; 1991 May; 13(1):81-5. PubMed ID: 1863531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.