These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12902265)

  • 1. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production.
    Roca C; Nielsen J; Olsson L
    Appl Environ Microbiol; 2003 Aug; 69(8):4732-6. PubMed ID: 12902265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation.
    Nissen TL; Kielland-Brandt MC; Nielsen J; Villadsen J
    Metab Eng; 2000 Jan; 2(1):69-77. PubMed ID: 10935936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose.
    Jeppsson M; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2002 Apr; 68(4):1604-9. PubMed ID: 11916674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae.
    Wei N; Xu H; Kim SR; Jin YS
    Appl Environ Microbiol; 2013 May; 79(10):3193-201. PubMed ID: 23475614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.
    Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J
    FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase.
    Zhang GC; Liu JJ; Ding WT
    Appl Environ Microbiol; 2012 Feb; 78(4):1081-6. PubMed ID: 22156411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae.
    Salusjärvi L; Kaunisto S; Holmström S; Vehkomäki ML; Koivuranta K; Pitkänen JP; Ruohonen L
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1383-92. PubMed ID: 24113892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.
    Watanabe S; Abu Saleh A; Pack SP; Annaluru N; Kodaki T; Makino K
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3044-3054. PubMed ID: 17768247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains.
    Kato H; Suyama H; Yamada R; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1585-92. PubMed ID: 22406859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae.
    Hou J; Suo F; Wang C; Li X; Shen Y; Bao X
    BMC Biotechnol; 2014 Feb; 14():13. PubMed ID: 24529074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.
    Avendaño A; Deluna A; Olivera H; Valenzuela L; Gonzalez A
    J Bacteriol; 1997 Sep; 179(17):5594-7. PubMed ID: 9287019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.