These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 12902265)
1. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Roca C; Nielsen J; Olsson L Appl Environ Microbiol; 2003 Aug; 69(8):4732-6. PubMed ID: 12902265 [TBL] [Abstract][Full Text] [Related]
2. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation. Nissen TL; Kielland-Brandt MC; Nielsen J; Villadsen J Metab Eng; 2000 Jan; 2(1):69-77. PubMed ID: 10935936 [TBL] [Abstract][Full Text] [Related]
3. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Jeppsson M; Johansson B; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Environ Microbiol; 2002 Apr; 68(4):1604-9. PubMed ID: 11916674 [TBL] [Abstract][Full Text] [Related]
4. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
5. Deletion of FPS1, encoding aquaglyceroporin Fps1p, improves xylose fermentation by engineered Saccharomyces cerevisiae. Wei N; Xu H; Kim SR; Jin YS Appl Environ Microbiol; 2013 May; 79(10):3193-201. PubMed ID: 23475614 [TBL] [Abstract][Full Text] [Related]
6. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
7. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Verho R; Londesborough J; Penttilä M; Richard P Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041 [TBL] [Abstract][Full Text] [Related]
8. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability. Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197 [TBL] [Abstract][Full Text] [Related]
9. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
10. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
11. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Zhang GC; Liu JJ; Ding WT Appl Environ Microbiol; 2012 Feb; 78(4):1081-6. PubMed ID: 22156411 [TBL] [Abstract][Full Text] [Related]