BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12902308)

  • 1. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages.
    Goode D; Allen VM; Barrow PA
    Appl Environ Microbiol; 2003 Aug; 69(8):5032-6. PubMed ID: 12902308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and Application of Lytic Bacteriophages against Campylobacter jejuni Isolated from Poultry in Japan.
    Furuta M; Nasu T; Umeki K; Hoang Minh D; Honjoh KI; Miyamoto T
    Biocontrol Sci; 2017; 22(4):213-221. PubMed ID: 29279578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocontrol of Salmonella Enteritidis in spiked chicken cuts by lytic bacteriophages ΦSP-1 and ΦSP-3.
    Augustine J; Bhat SG
    J Basic Microbiol; 2015 Apr; 55(4):500-3. PubMed ID: 25588852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Control of Salmonella Enteritidis in Foods Using Bacteriophages.
    Bao H; Zhang P; Zhang H; Zhou Y; Zhang L; Wang R
    Viruses; 2015 Aug; 7(8):4836-53. PubMed ID: 26305252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni.
    Atterbury RJ; Connerton PL; Dodd CE; Rees CE; Connerton IF
    Appl Environ Microbiol; 2003 Oct; 69(10):6302-6. PubMed ID: 14532096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of Salmonella contamination on the surface of chicken skin using bacteriophage.
    Atterbury RJ; Gigante AM; Rubio Lozano MS; Méndez Medina RD; Robinson G; Alloush H; Barrow PA; Allen VM
    Virol J; 2020 Jul; 17(1):98. PubMed ID: 32646515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Lytic Siphophage vB_StyS-LmqsSP1 Reduces the Number of Salmonella enterica Serovar Typhimurium Isolates on Chicken Skin.
    Shakeri G; Hammerl JA; Jamshidi A; Ghazvini K; Rohde M; Szabo I; Kehrenberg C; Plötz M; Kittler S
    Appl Environ Microbiol; 2021 Nov; 87(24):e0142421. PubMed ID: 34586906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Characterization of a Virulent Bacteriophage for Controlling Salmonella Enteritidis Growth in Ready-to-Eat Mixed-Ingredient Salads.
    Zhou WY; Sun SF; Zhang YS; Hu Q; Zheng XF; Yang ZQ; Jiao XA
    J Food Prot; 2021 Sep; 84(9):1629-1639. PubMed ID: 33793776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decontamination of chicken skin surfaces inoculated with Listeria innocua, Salmonella enteritidis and Campylobacter jejuni by contact with a concentrated lactic acid solution.
    Lecompte JY; Collignan A; Sarter S; Cardinale E; Kondjoyan A
    Br Poult Sci; 2009 May; 50(3):307-17. PubMed ID: 19637030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of steam and lactic acid treatments on the survival of Salmonella Enteritidis and Campylobacter jejuni inoculated on chicken skin.
    Chaine A; Arnaud E; Kondjoyan A; Collignan A; Sarter S
    Int J Food Microbiol; 2013 Apr; 162(3):276-82. PubMed ID: 23454819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of phage-resistant bacterial pathogen re-growth with the combined use of bacteriophages and EDTA.
    Huang HH; Furuta M; Nasu T; Hirono M; Pruet J; Duc HM; Zhang Y; Masuda Y; Honjoh KI; Miyamoto T
    Food Microbiol; 2021 Dec; 100():103853. PubMed ID: 34416958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of raw poultry with nonthermal dielectric barrier discharge plasma to reduce Campylobacter jejuni and Salmonella enterica.
    Dirks BP; Dobrynin D; Fridman G; Mukhin Y; Fridman A; Quinlan JJ
    J Food Prot; 2012 Jan; 75(1):22-8. PubMed ID: 22221351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of Nontyphoidal Salmonella enterica in Broth and on Raw Chicken Breast by a Broad-spectrum Bacteriophage Cocktail.
    Brenner T; Schultze DM; Mahoney D; Wang S
    J Food Prot; 2024 Jan; 87(1):100207. PubMed ID: 38142823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar enteritidis in vitro and in vivo.
    Andreatti Filho RL; Higgins JP; Higgins SE; Gaona G; Wolfenden AD; Tellez G; Hargis BM
    Poult Sci; 2007 Sep; 86(9):1904-9. PubMed ID: 17704377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient isolation of Campylobacter bacteriophages from chicken skin, analysis of several isolation protocols.
    Nafarrate I; Mateo E; Amárita F; de Marañón IM; Lasagabaster A
    Food Microbiol; 2020 Sep; 90():103486. PubMed ID: 32336365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens.
    Wong CL; Sieo CC; Tan WS; Abdullah N; Hair-Bejo M; Abu J; Ho YW
    Int J Food Microbiol; 2014 Feb; 172():92-101. PubMed ID: 24361838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods.
    Jørgensen F; Bailey R; Williams S; Henderson P; Wareing DR; Bolton FJ; Frost JA; Ward L; Humphrey TJ
    Int J Food Microbiol; 2002 Jun; 76(1-2):151-64. PubMed ID: 12038572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.
    Sukumaran AT; Nannapaneni R; Kiess A; Sharma CS
    Int J Food Microbiol; 2015 Aug; 207():8-15. PubMed ID: 25950852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of Campylobacter jejuni in broiler chicken by successive application of group II and group III phages.
    Hammerl JA; Jäckel C; Alter T; Janzcyk P; Stingl K; Knüver MT; Hertwig S
    PLoS One; 2014; 9(12):e114785. PubMed ID: 25490713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Salmonella spp.-specific bacteriophages and their biocontrol application in chicken breast meat.
    Kim JH; Kim HJ; Jung SJ; Mizan MFR; Park SH; Ha SD
    J Food Sci; 2020 Mar; 85(3):526-534. PubMed ID: 32043599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.