These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12903268)

  • 1. Thermodynamic analyses of triplex formation with homopurine oligonucleotide.
    Torigoe H; Shimizume R
    Nucleic Acids Symp Ser; 2000; (44):61-2. PubMed ID: 12903268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of a stable intramolecular DNA triple helix formation.
    Völker J; Botes DP; Lindsey GG; Klump HH
    J Mol Biol; 1993 Apr; 230(4):1278-90. PubMed ID: 8487304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the DNA triplex formed by d(TGGGTGGGTGGTTGGGTGGG) and a critical R.Y sequence located in the promoter of the murine Ki-ras proto-oncogene.
    Xodo LE
    FEBS Lett; 1995 Aug; 370(1-2):153-7. PubMed ID: 7649296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic and kinetic studies of the formation of triple helices between purine-rich deoxyribo-oligonucleotides and the promoter region of the human c-src proto-oncogene.
    Aich P; Ritchie S; Bonham K; Lee JS
    Nucleic Acids Res; 1998 Sep; 26(18):4173-7. PubMed ID: 9722637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular beacon strategy for the thermodynamic characterization of triplex DNA: triplex formation at the promoter region of cyclin D1.
    Antony T; Thomas T; Sigal LH; Shirahata A; Thomas TJ
    Biochemistry; 2001 Aug; 40(31):9387-95. PubMed ID: 11478908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAAGAAAGA) at acidic pH.
    Xodo LE; Manzini G; Quadrifoglio F
    Nucleic Acids Res; 1990 Jun; 18(12):3557-64. PubMed ID: 2362808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promotion mechanism of triplex DNA formation by comb-type polycations: thermodynamic analyses of sequence specificity and ionic strength dependence.
    Torigoe H; Akaike T; Maruyama A
    Nucleic Acids Symp Ser; 1999; (42):137-8. PubMed ID: 10780417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the stability of DNA triplexes.
    Roberts RW; Crothers DM
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4320-5. PubMed ID: 8633063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA melting investigated by differential scanning calorimetry and Raman spectroscopy.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1996 Dec; 71(6):3350-60. PubMed ID: 8968604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric analysis of triple helices targeted to the d(G3A4G3).d(C3T4C3) duplex.
    Scaria PV; Shafer RH
    Biochemistry; 1996 Aug; 35(33):10985-94. PubMed ID: 8718892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent heat capacity change accompanying a nonspecific protein-DNA interaction. Escherichia coli SSB tetramer binding to oligodeoxyadenylates.
    Ferrari ME; Lohman TM
    Biochemistry; 1994 Nov; 33(43):12896-910. PubMed ID: 7947696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analysis of triple-helix formation by pyrimidine oligodeoxynucleotides and duplex DNA.
    Xodo LE
    Eur J Biochem; 1995 Mar; 228(3):918-26. PubMed ID: 7737194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidine and a matched duplex by filter binding assay.
    Shindo H; Torigoe H; Sarai A
    Biochemistry; 1993 Aug; 32(34):8963-9. PubMed ID: 8364041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic identification of stable folding intermediates in the B-subunit of cholera toxin.
    Bhakuni V; Xie D; Freire E
    Biochemistry; 1991 May; 30(20):5055-60. PubMed ID: 2036374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic and kinetic effects of N3'-->P5' phosphoramidate modification on pyrimidine motif triplex DNA formation.
    Torigoe H
    Biochemistry; 2001 Jan; 40(4):1063-9. PubMed ID: 11170429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xylose-DNA: comparison of the thermodynamic stability of oligo(2'-deoxyxylonucleotide) and oligo(2'-deoxyribonucleotide) duplexes.
    Schöppe A; Hinz HJ; Rosemeyer H; Seela F
    Eur J Biochem; 1996 Jul; 239(1):33-41. PubMed ID: 8706716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible origin of differences between van't Hoff and calorimetric enthalpy estimates.
    Chaires JB
    Biophys Chem; 1997 Feb; 64(1-3):15-23. PubMed ID: 9127935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices.
    Holbrook JA; Capp MW; Saecker RM; Record MT
    Biochemistry; 1999 Jun; 38(26):8409-22. PubMed ID: 10387087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.