These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12903271)

  • 1. Separation of triplet repeat DNA by capillary electrophoresis and the conformational analysis by atomic force microscope.
    Nakagawa T; Ueda M; Baba Y
    Nucleic Acids Symp Ser; 2000; (44):67-8. PubMed ID: 12903271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual capillary electrophoretic behavior of triplet repeat DNA.
    Kiba Y; Baba Y
    J Biochem Biophys Methods; 1999 Nov; 41(2-3):143-51. PubMed ID: 10626772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalously fast migration of triplet-repeat DNA in capillary electrophoresis with linear polymer solution.
    Kiba Y; Zhang L; Baba Y
    Electrophoresis; 2003 Jan; 24(3):452-7. PubMed ID: 12569536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA.
    Sinden RR; Potaman VN; Oussatcheva EA; Pearson CE; Lyubchenko YL; Shlyakhtenko LS
    J Biosci; 2002 Feb; 27(1 Suppl 1):53-65. PubMed ID: 11927777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological implications of the DNA structures associated with disease-causing triplet repeats.
    Sinden RR
    Am J Hum Genet; 1999 Feb; 64(2):346-53. PubMed ID: 9973271
    [No Abstract]   [Full Text] [Related]  

  • 7. NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases.
    Usdin K
    Nucleic Acids Res; 1998 Sep; 26(17):4078-85. PubMed ID: 9705522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slipped structures in DNA triplet repeat sequences: entropic contributions to genetic instabilities.
    Harvey SC
    Biochemistry; 1997 Mar; 36(11):3047-9. PubMed ID: 9115978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trinucleotide repeats associated with human disease.
    Mitas M
    Nucleic Acids Res; 1997 Jun; 25(12):2245-54. PubMed ID: 9171073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of triplet-repeat DNA by capillary electrophoresis.
    Kiba Y; Baba Y
    Methods Mol Biol; 2001; 163():221-9. PubMed ID: 11242947
    [No Abstract]   [Full Text] [Related]  

  • 13. Human FEN-1 can process the 5'-flap DNA of CTG/CAG triplet repeat derived from human genetic diseases by length and sequence dependent manner.
    Lee S; Park MS
    Exp Mol Med; 2002 Sep; 34(4):313-7. PubMed ID: 12515398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of conformational changes on DNA molecule intercalating with a fluorescence dye in an electrophoretic buffer solution by means of atomic force microscopy.
    Kaji N; Ueda M; Baba Y
    Electrophoresis; 2001 Oct; 22(16):3357-64. PubMed ID: 11669510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary electrophoresis for the detection of Fragile X expanded alleles.
    Mao R; Bayrak-Toydemir P; Lyon E
    Methods Mol Biol; 2013; 919():275-85. PubMed ID: 22976108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases.
    Pearson CE; Ewel A; Acharya S; Fishel RA; Sinden RR
    Hum Mol Genet; 1997 Jul; 6(7):1117-23. PubMed ID: 9215683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting.
    Bergquist H; Rocha CS; Álvarez-Asencio R; Nguyen CH; Rutland MW; Smith CI; Good L; Nielsen PE; Zain R
    PLoS One; 2016; 11(11):e0165788. PubMed ID: 27846236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.
    Pearson CE; Wang YH; Griffith JD; Sinden RR
    Nucleic Acids Res; 1998 Feb; 26(3):816-23. PubMed ID: 9443975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding of higher DNA structures formed by the d(CGG) triplet repeat by UP1 protein.
    Fukuda H; Katahira M; Tanaka E; Enokizono Y; Tsuchiya N; Higuchi K; Nagao M; Nakagama H
    Genes Cells; 2005 Oct; 10(10):953-62. PubMed ID: 16164596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small molecule-induced trinucleotide repeat contractions during in vitro DNA synthesis.
    Dohno C; Hagihara M; Binti Mohd Zaifuddin N; Nihei M; Saito K; Nakatani K
    Chem Commun (Camb); 2021 Apr; 57(26):3235-3238. PubMed ID: 33646236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.