These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 12903288)

  • 1. Analysis of double-strand-break repair by Chlorella retrotransposon Zepp.
    Yamamoto Y; Noutoshi Y; Fujie M; Usami S; Yamada T
    Nucleic Acids Symp Ser; 2000; (44):101-2. PubMed ID: 12903288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrotransposon-mediated restoration of Chlorella telomeres: accumulation of Zepp retrotransposons at termini of newly formed minichromosomes.
    Yamamoto Y; Fujimoto Y; Arai R; Fujie M; Usami S; Yamada T
    Nucleic Acids Res; 2003 Aug; 31(15):4646-53. PubMed ID: 12888526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region.
    Higashiyama T; Noutoshi Y; Fujie M; Yamada T
    EMBO J; 1997 Jun; 16(12):3715-23. PubMed ID: 9218812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the Chlorella Zepp retrotransposon: nested Zepp clusters in the genome.
    Noutoshi Y; Arai R; Fujie M; Yamada T
    Mol Gen Genet; 1998 Aug; 259(3):256-63. PubMed ID: 9749668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular organization of Chlorella vulgaris chromosome I: presence of telomeric repeats that are conserved in higher plants.
    Higashiyama T; Maki S; Yamada T
    Mol Gen Genet; 1995 Jan; 246(1):29-36. PubMed ID: 7823910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Telomere and LINE-like elements at the termini of the Chlorella chromosome I.
    Higashiyama T; Noutoshi Y; Akiba M; Yamada T
    Nucleic Acids Symp Ser; 1995; (34):71-2. PubMed ID: 8841557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular anatomy of a small chromosome in the green alga Chlorella vulgaris.
    Noutoshi Y; Ito Y; Kanetani S; Fujie M; Usami S; Yamada T
    Nucleic Acids Res; 1998 Sep; 26(17):3900-7. PubMed ID: 9705496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NHEJ Contributes to the Fast Repair of Radiation-induced DNA Double-strand Breaks at Late Prophase I Telomeres.
    Ahmed EA; Rosemann M; Scherthan H
    Health Phys; 2018 Jul; 115(1):102-107. PubMed ID: 29787435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of radiation induced DNA damages in unicellular green algae.
    Chankova SG; Mehandjiev AD; Blagoeva ED; Angelov DA; Keskinova E; Sergeeva SA; Shevchenko VA; Ptitsina SN; Syemov AB
    Acta Biol Hung; 1990; 41(1-3):57-64. PubMed ID: 2094130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposon control mechanisms in telomere biology.
    Kordyukova M; Olovnikov I; Kalmykova A
    Curr Opin Genet Dev; 2018 Apr; 49():56-62. PubMed ID: 29571043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No DDRama at chromosome ends: TRF2 takes centre stage.
    Feuerhahn S; Chen LY; Luke B; Porro A
    Trends Biochem Sci; 2015 May; 40(5):275-85. PubMed ID: 25845889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-specific recognition and cleavage of telomeric repeat (TTAGG)(n) by endonuclease of non-long terminal repeat retrotransposon TRAS1.
    Anzai T; Takahashi H; Fujiwara H
    Mol Cell Biol; 2001 Jan; 21(1):100-8. PubMed ID: 11113185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres.
    Abad JP; De Pablos B; Osoegawa K; De Jong PJ; Martín-Gallardo A; Villasante A
    Mol Biol Evol; 2004 Sep; 21(9):1620-4. PubMed ID: 15175413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts.
    Richter T; Saretzki G; Nelson G; Melcher M; Olijslagers S; von Zglinicki T
    Mech Ageing Dev; 2007 Apr; 128(4):340-5. PubMed ID: 17395247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of Chlorella chromosomes: screening of bent DNAs.
    Akiba ; Noutoshi Y; Maki S; Higashiyama T; Yamada T
    Nucleic Acids Symp Ser; 1995; (34):73-4. PubMed ID: 8841558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomeres and double-strand breaks - all's well that "ends" well. ..
    Bailey SM
    Radiat Res; 2008 Jan; 169(1):1-7. PubMed ID: 18159961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minichromosome formation in Chlorella cells irradiated with electron beams.
    Yamada T; Fujimoto Y; Yamamoto Y; Machida K; Oda M; Fujie M; Usami S; Nakayama H
    J Biosci Bioeng; 2003; 95(6):601-7. PubMed ID: 16233464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian Rad9 plays a role in telomere stability, S- and G2-phase-specific cell survival, and homologous recombinational repair.
    Pandita RK; Sharma GG; Laszlo A; Hopkins KM; Davey S; Chakhparonian M; Gupta A; Wellinger RJ; Zhang J; Powell SN; Roti Roti JL; Lieberman HB; Pandita TK
    Mol Cell Biol; 2006 Mar; 26(5):1850-64. PubMed ID: 16479004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Telomere maintenance is dependent on activities required for end repair of double-strand breaks.
    Nugent CI; Bosco G; Ross LO; Evans SK; Salinger AP; Moore JK; Haber JE; Lundblad V
    Curr Biol; 1998 May; 8(11):657-60. PubMed ID: 9635193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of telomeric chromatin in Drosophila.
    Shpiz SG; Kalmykova AI
    Biochemistry (Mosc); 2007 Jun; 72(6):618-30. PubMed ID: 17630906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.