These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 12903807)
1. Bioinformatics: how it is being used to identify bacterial vaccine candidates. Zagursky RJ; Olmsted SB; Russell DP; Wooters JL Expert Rev Vaccines; 2003 Jun; 2(3):417-36. PubMed ID: 12903807 [TBL] [Abstract][Full Text] [Related]
3. Mycobacterial gene cloning and expression, comparative genomics, bioinformatics and proteomics in relation to the development of new vaccines and diagnostic reagents. Mustafa AS Med Princ Pract; 2005; 14 Suppl 1():27-34. PubMed ID: 16103711 [TBL] [Abstract][Full Text] [Related]
4. Developing antibacterial vaccines in genomics and proteomics era. Kaushik DK; Sehgal D Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199 [TBL] [Abstract][Full Text] [Related]
5. [Screen in vivo induced gene of Mycobacterium tuberculosis by IVIAT]. Li T; Gao ZY; Wang HL; Feng EL; Chen ZD; Li XY; Huang LY; Huang CF Yi Chuan Xue Bao; 2005 Feb; 32(2):111-7. PubMed ID: 15759856 [TBL] [Abstract][Full Text] [Related]
6. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. Serruto D; Adu-Bobie J; Capecchi B; Rappuoli R; Pizza M; Masignani V J Biotechnol; 2004 Sep; 113(1-3):15-32. PubMed ID: 15380644 [TBL] [Abstract][Full Text] [Related]
7. New ways to identify novel bacterial antigens for vaccine development. Movahedi AR; Hampson DJ Vet Microbiol; 2008 Sep; 131(1-2):1-13. PubMed ID: 18372122 [TBL] [Abstract][Full Text] [Related]
8. [Development of antituberculous drugs: current status and future prospects]. Tomioka H; Namba K Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921 [TBL] [Abstract][Full Text] [Related]
9. Recombinant and synthetic peptides to identify Mycobacterium tuberculosis antigens and epitopes of diagnostic and vaccine relevance. Mustafa AS Tuberculosis (Edinb); 2005; 85(5-6):367-76. PubMed ID: 16253561 [TBL] [Abstract][Full Text] [Related]
10. Application of genomics in bacterial vaccine discovery: a decade in review. Zagursky RJ; Anderson AS Curr Opin Pharmacol; 2008 Oct; 8(5):632-8. PubMed ID: 18625342 [TBL] [Abstract][Full Text] [Related]
11. Meningococcal protein antigens and vaccines. Feavers IM; Pizza M Vaccine; 2009 Jun; 27 Suppl 2():B42-50. PubMed ID: 19481315 [TBL] [Abstract][Full Text] [Related]
12. Antigenome technology: a novel approach for the selection of bacterial vaccine candidate antigens. Meinke A; Henics T; Hanner M; Minh DB; Nagy E Vaccine; 2005 Mar; 23(17-18):2035-41. PubMed ID: 15755567 [TBL] [Abstract][Full Text] [Related]
13. In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans. Yang HL; Zhu YZ; Qin JH; He P; Jiang XC; Zhao GP; Guo XK BMC Genomics; 2006 Nov; 7():293. PubMed ID: 17109759 [TBL] [Abstract][Full Text] [Related]
14. Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Ganguly N; Siddiqui I; Sharma P Tuberculosis (Edinb); 2008 Nov; 88(6):510-7. PubMed ID: 18640874 [TBL] [Abstract][Full Text] [Related]
15. Bioinformatics databases and tools in virology research: an overview. Yan Q In Silico Biol; 2008; 8(2):71-85. PubMed ID: 18928197 [TBL] [Abstract][Full Text] [Related]
16. Assessment of RD 1-encoded mycobacterial antigens in the immunodiagnosis of pulmonary, extrapulmonary, and latent tuberculosis infections. Katti MK J Infect Dis; 2001 Dec; 184(11):1497-8. PubMed ID: 11709800 [No Abstract] [Full Text] [Related]
17. The impact of genomics on vaccine design. Scarselli M; Giuliani MM; Adu-Bobie J; Pizza M; Rappuoli R Trends Biotechnol; 2005 Feb; 23(2):84-91. PubMed ID: 15661345 [TBL] [Abstract][Full Text] [Related]