BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12903962)

  • 1. Interaction between fenhexamid and yeasts during the alcoholic fermentation of Saccharomyces cerevisiae.
    Cabras P; Farris GA; Fiori MG; Pusino A
    J Agric Food Chem; 2003 Aug; 51(17):5012-5. PubMed ID: 12903962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of a fenhexamid photoproduct during the alcoholic fermentation of Saccharomyces cerevisiae.
    Cabras P; Farris GA; Pinna MV; Pusino A
    J Agric Food Chem; 2004 Dec; 52(26):8053-6. PubMed ID: 15612795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of new generation fungicides on Saccharomyces cerevisiae growth, grape must fermentation and aroma biosynthesis.
    Noguerol-Pato R; Torrado-Agrasar A; González-Barreiro C; Cancho-Grande B; Simal-Gándara J
    Food Chem; 2014 Mar; 146():234-41. PubMed ID: 24176337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fenhexamid adsorption behavior on soil amended with wine lees.
    Pinna MV; Budroni M; Farris GA; Pusino A
    J Agric Food Chem; 2008 Nov; 56(22):10824-8. PubMed ID: 18975967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of fungicides on grape yeast content and its evolution in the fermentation.
    Oliva J; Cayuela M; Paya P; Martinez-Cacha A; Cámara MA; Barba A
    Commun Agric Appl Biol Sci; 2007; 72(2):181-9. PubMed ID: 18399439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fenhexamid residues in grapes and wine.
    Cabras P; Angioni A; Garau VL; Pirisi FM; Cabitza F; Pala M; Farris GA
    Food Addit Contam; 2001 Jul; 18(7):625-9. PubMed ID: 11469318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The vinification of partially dried grapes: a comparative fermentation study of Saccharomyces cerevisiae strains under high sugar stress.
    Malacrinò P; Tosi E; Caramia G; Prisco R; Zapparoli G
    Lett Appl Microbiol; 2005; 40(6):466-72. PubMed ID: 15892744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydroxyanilide fenhexamid, a new sterol biosynthesis inhibitor fungicide efficient against the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea).
    Debieu D; Bach J; Hugon M; Malosse C; Leroux P
    Pest Manag Sci; 2001 Nov; 57(11):1060-7. PubMed ID: 11721524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222--Part I: kinetic modeling and parameters.
    Zhang J; Shao X; Townsend OV; Lynd LR
    Biotechnol Bioeng; 2009 Dec; 104(5):920-31. PubMed ID: 19575439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.
    Elsztein C; de Menezes JA; de Morais MA
    J Ind Microbiol Biotechnol; 2008 Sep; 35(9):967-73. PubMed ID: 18506496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production.
    Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):287-92. PubMed ID: 19018525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains.
    Billard A; Fillinger S; Leroux P; Lachaise H; Beffa R; Debieu D
    Pest Manag Sci; 2012 May; 68(5):684-91. PubMed ID: 22045588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A long term field study of the effect of fungicides penconazole and sulfur on yeasts in the vineyard.
    Cordero-Bueso G; Arroyo T; Valero E
    Int J Food Microbiol; 2014 Oct; 189():189-94. PubMed ID: 25171112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation behaviour and volatile compound production by agave and grape must yeasts in high sugar Agave tequilana and grape must fermentations.
    Arrizon J; Fiore C; Acosta G; Romano P; Gschaedler A
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):181-9. PubMed ID: 16534541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal antibody generation and direct competitive enzyme-linked immunosorbent assay evaluation for the analysis of the fungicide fenhexamid in must and wine.
    Mercader JV; Abad-Fuentes A
    J Agric Food Chem; 2009 Jun; 57(12):5129-35. PubMed ID: 19530708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of pyrimethanil on the growth of wine yeasts.
    Cus F; Raspor P
    Lett Appl Microbiol; 2008 Jul; 47(1):54-9. PubMed ID: 18544142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity effects of fungicide residues on the wine-producing process.
    Calhelha RC; Andrade JV; Ferreira IC; Estevinho LM
    Food Microbiol; 2006 Jun; 23(4):393-8. PubMed ID: 16943029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contaminant yeast detection in industrial ethanol fermentation must by rDNA-PCR.
    de Souza Liberal AT; da Silva Filho EA; de Morais JO; Simões DA; de Morais MA
    Lett Appl Microbiol; 2005; 40(1):19-23. PubMed ID: 15612997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pesticides in fermentative processes of wine.
    Cabras P; Angioni A; Garau VL; Pirisi FM; Farris GA; Madau G; Emonti G
    J Agric Food Chem; 1999 Sep; 47(9):3854-7. PubMed ID: 10552734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of several fungicides on the antioxidant activity of red wines (var. Monastrell).
    Oliva J; Mulero J; Payá P; Cámara MA; Barba A
    J Environ Sci Health B; 2009 Aug; 44(6):546-52. PubMed ID: 20183061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.