BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12904291)

  • 1. Structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism.
    Steinbacher S; Schiffmann S; Richter G; Huber R; Bacher A; Fischer M
    J Biol Chem; 2003 Oct; 278(43):42256-65. PubMed ID: 12904291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate.
    Steinbacher S; Schiffmann S; Bacher A; Fischer M
    Acta Crystallogr D Biol Crystallogr; 2004 Jul; 60(Pt 7):1338-40. PubMed ID: 15213409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of riboflavin in archaea studies on the mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jannaschii.
    Fischer M; Romisch W; Schiffmann S; Kelly M; Oschkinat H; Steinbacher S; Huber R; Eisenreich W; Richter G; Bacher A
    J Biol Chem; 2002 Nov; 277(44):41410-6. PubMed ID: 12200440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential anti-bacterial drug target: structural characterization of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Salmonella typhimurium LT2.
    Kumar P; Singh M; Gautam R; Karthikeyan S
    Proteins; 2010 Dec; 78(16):3292-303. PubMed ID: 20806221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for competitive inhibition of 3,4-dihydroxy-2-butanone-4-phosphate synthase from Vibrio cholerae.
    Islam Z; Kumar A; Singh S; Salmon L; Karthikeyan S
    J Biol Chem; 2015 May; 290(18):11293-308. PubMed ID: 25792735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of 3,4-dihydroxy-2-butanone 4-phosphate synthase of riboflavin biosynthesis.
    Liao DI; Calabrese JC; Wawrzak Z; Viitanen PV; Jordan DB
    Structure; 2001 Jan; 9(1):11-8. PubMed ID: 11342130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of riboflavin. Studies on the mechanism of L-3,4-dihydroxy-2-butanone 4-phosphate synthase.
    Volk R; Bacher A
    J Biol Chem; 1991 Nov; 266(31):20610-8. PubMed ID: 1939111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the Chemical Mechanism of RibB (3,4-Dihydroxy-2-butanone 4-phosphate Synthase) of Riboflavin Biosynthesis.
    Kenjić N; Meneely KM; Wherritt DJ; Denler MC; Jackson TA; Moran GR; Lamb AL
    J Am Chem Soc; 2022 Jul; 144(28):12769-12780. PubMed ID: 35802469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure and biochemical properties of DHBPS from Streptococcus pneumoniae, a potential anti-infective target for Gram-positive bacteria.
    Li J; Hua Z; Miao L; Jian T; Wei Y; Shasha Z; Shaocheng Z; Zhen G; Hongpeng Z; Ailong H; Deqiang W
    Protein Expr Purif; 2013 Oct; 91(2):161-8. PubMed ID: 23954596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural definition of the active site and catalytic mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase.
    Liao DI; Zheng YJ; Viitanen PV; Jordan DB
    Biochemistry; 2002 Feb; 41(6):1795-806. PubMed ID: 11827524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli.
    Richter G; Volk R; Krieger C; Lahm HW; Röthlisberger U; Bacher A
    J Bacteriol; 1992 Jun; 174(12):4050-6. PubMed ID: 1597419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics studies unravel role of conserved residues responsible for movement of ions into active site of DHBPS.
    Shinde RN; Karthikeyan S; Singh B
    Sci Rep; 2017 Jan; 7():40452. PubMed ID: 28079168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase.
    Volk R; Bacher A
    J Biol Chem; 1990 Nov; 265(32):19479-85. PubMed ID: 2246238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII.
    Lai B; Li Y; Cao A; Lai L
    Biochemistry; 2003 Jan; 42(3):785-91. PubMed ID: 12534291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of riboflavin in archaea. 6,7-dimethyl-8-ribityllumazine synthase of Methanococcus jannaschii.
    Haase I; Mörtl S; Köhler P; Bacher A; Fischer M
    Eur J Biochem; 2003 Mar; 270(5):1025-32. PubMed ID: 12603336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of riboflavin: 3,4-dihydroxy-2-butanone-4-phosphate synthase.
    Richter G; Krieger C; Volk R; Kis K; Ritz H; Götze E; Bacher A
    Methods Enzymol; 1997; 280():374-82. PubMed ID: 9211332
    [No Abstract]   [Full Text] [Related]  

  • 17. Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase.
    Lee LV; Poyner RR; Vu MV; Cleland WW
    Biochemistry; 2000 Apr; 39(16):4821-30. PubMed ID: 10769139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate.
    Taylor TC; Andersson I
    J Mol Biol; 1997 Jan; 265(4):432-44. PubMed ID: 9034362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cloning and characterization of a new antibacterial target, 3,4-dihydroxy-2-butanone-4-phosphate synthase].
    Jin L; Zhou H; Zhao S; Yang W; Niu S; Wang D
    Wei Sheng Wu Xue Bao; 2012 Nov; 52(11):1415-20. PubMed ID: 23383514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure and catalytic mechanism of the MJ0109 gene product: a bifunctional enzyme with inositol monophosphatase and fructose 1,6-bisphosphatase activities.
    Johnson KA; Chen L; Yang H; Roberts MF; Stec B
    Biochemistry; 2001 Jan; 40(3):618-30. PubMed ID: 11170378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.