These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Generalisation between opposing visuomotor rotations when each is associated with visual targets and movements of different amplitude. Woolley DG; Carson RG; Tresilian JR; Riek S Brain Res; 2008 Jul; 1219():46-58. PubMed ID: 18541224 [TBL] [Abstract][Full Text] [Related]
3. Neuroanatomical correlates of motor acquisition and motor transfer. Seidler RD; Noll DC J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874 [TBL] [Abstract][Full Text] [Related]
4. Influence of haptic guidance in learning a novel visuomotor task. van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551 [TBL] [Abstract][Full Text] [Related]
5. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. Rabe K; Livne O; Gizewski ER; Aurich V; Beck A; Timmann D; Donchin O J Neurophysiol; 2009 Apr; 101(4):1961-71. PubMed ID: 19176608 [TBL] [Abstract][Full Text] [Related]
6. Preparatory activity in motor cortex reflects learning of local visuomotor skills. Paz R; Boraud T; Natan C; Bergman H; Vaadia E Nat Neurosci; 2003 Aug; 6(8):882-90. PubMed ID: 12872127 [TBL] [Abstract][Full Text] [Related]
7. Segregation between acquisition and long-term memory in sensorimotor learning. Zach N; Kanarek N; Inbar D; Grinvald Y; Milestein T; Vaadia E Eur J Neurosci; 2005 Nov; 22(9):2357-62. PubMed ID: 16262674 [TBL] [Abstract][Full Text] [Related]
9. Asymmetric learning transfer between imagined viewer- and object-rotations: evidence of a hierarchical organization of spatial reference frames. Pellizzer G; Bâ MB; Zanello A; Merlo MC Brain Cogn; 2009 Dec; 71(3):272-8. PubMed ID: 19748718 [TBL] [Abstract][Full Text] [Related]
10. Insights into the control of arm movement during body motion as revealed by EMG analyses. Blouin J; Guillaud E; Bresciani JP; Guerraz M; Simoneau M Brain Res; 2010 Jan; 1309():40-52. PubMed ID: 19883633 [TBL] [Abstract][Full Text] [Related]
11. Separate adaptive mechanisms for controlling trajectory and final position in reaching. Scheidt RA; Ghez C J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996 [TBL] [Abstract][Full Text] [Related]
12. Differential effects of age on sequence learning and sensorimotor adaptation. Seidler RD Brain Res Bull; 2006 Oct; 70(4-6):337-46. PubMed ID: 17027769 [TBL] [Abstract][Full Text] [Related]
13. Independent learning of internal models for kinematic and dynamic control of reaching. Krakauer JW; Ghilardi MF; Ghez C Nat Neurosci; 1999 Nov; 2(11):1026-31. PubMed ID: 10526344 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms underlying interlimb transfer of visuomotor rotations. Wang J; Sainburg RL Exp Brain Res; 2003 Apr; 149(4):520-6. PubMed ID: 12677333 [TBL] [Abstract][Full Text] [Related]
15. Kinematics and dynamics are not represented independently in motor working memory: evidence from an interference study. Tong C; Wolpert DM; Flanagan JR J Neurosci; 2002 Feb; 22(3):1108-13. PubMed ID: 11826139 [TBL] [Abstract][Full Text] [Related]
16. Different learned coordinate frames for planning trajectories and final positions in reaching. Ghez C; Scheidt R; Heijink H J Neurophysiol; 2007 Dec; 98(6):3614-26. PubMed ID: 17804576 [TBL] [Abstract][Full Text] [Related]
17. Examining procedural consolidation with visuomotor learning in the lower limb. Arima M; Shimodozono M; Etoh S; Tanaka N; Kawahira K Int J Neurosci; 2010 May; 120(5):344-51. PubMed ID: 20402572 [TBL] [Abstract][Full Text] [Related]
18. Learning and generation of goal-directed arm reaching from scratch. Kambara H; Kim K; Shin D; Sato M; Koike Y Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565 [TBL] [Abstract][Full Text] [Related]