These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 12904502)
1. Effects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats. Giroux N; Chau C; Barbeau H; Reader TA; Rossignol S J Neurophysiol; 2003 Aug; 90(2):1027-45. PubMed ID: 12904502 [TBL] [Abstract][Full Text] [Related]
2. Effects of intrathecal glutamatergic drugs on locomotion I. NMDA in short-term spinal cats. Chau C; Giroux N; Barbeau H; Jordan L; Rossignol S J Neurophysiol; 2002 Dec; 88(6):3032-45. PubMed ID: 12466428 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the effect of intrathecal administration of clonidine and yohimbine on the locomotion of intact and spinal cats. Giroux N; Reader TA; Rossignol S J Neurophysiol; 2001 Jun; 85(6):2516-36. PubMed ID: 11387398 [TBL] [Abstract][Full Text] [Related]
4. Effects of localized intraspinal injections of a noradrenergic blocker on locomotion of high decerebrate cats. Delivet-Mongrain H; Leblond H; Rossignol S J Neurophysiol; 2008 Aug; 100(2):907-21. PubMed ID: 18550723 [TBL] [Abstract][Full Text] [Related]
5. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord? Cowley KC; Zaporozhets E; Maclean JN; Schmidt BJ J Neurophysiol; 2005 Dec; 94(6):3805-14. PubMed ID: 16120672 [TBL] [Abstract][Full Text] [Related]
6. The effects of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. Douglas JR; Noga BR; Dai X; Jordan LM J Neurosci; 1993 Mar; 13(3):990-1000. PubMed ID: 8095068 [TBL] [Abstract][Full Text] [Related]
7. Alpha-1 adrenoceptor agonists generate a "fast" NMDA receptor-independent motor rhythm in the neonatal rat spinal cord. Gabbay H; Lev-Tov A J Neurophysiol; 2004 Aug; 92(2):997-1010. PubMed ID: 15084642 [TBL] [Abstract][Full Text] [Related]
8. Effects of intrathecal alpha1- and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. Chau C; Barbeau H; Rossignol S J Neurophysiol; 1998 Jun; 79(6):2941-63. PubMed ID: 9636099 [TBL] [Abstract][Full Text] [Related]
9. Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats. Langlet C; Leblond H; Rossignol S J Neurophysiol; 2005 May; 93(5):2474-88. PubMed ID: 15647400 [TBL] [Abstract][Full Text] [Related]
10. The responsiveness of the rat intergeniculate leaflet neurons to glutamatergic agonists. Błasiak A; Pekala D; Lewandowski MH J Physiol Pharmacol; 2007 Dec; 58(4):669-81. PubMed ID: 18195480 [TBL] [Abstract][Full Text] [Related]
11. An antisense oligonucleotide to the N-methyl-D-aspartate (NMDA) subunit NMDAR1 attenuates NMDA-induced nociception, hyperalgesia, and morphine tolerance. Shimoyama N; Shimoyama M; Davis AM; Monaghan DT; Inturrisi CE J Pharmacol Exp Ther; 2005 Feb; 312(2):834-40. PubMed ID: 15388787 [TBL] [Abstract][Full Text] [Related]
12. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord. Wang D; Grillner S; Wallén P Neuropharmacology; 2006 Nov; 51(6):1038-46. PubMed ID: 16919683 [TBL] [Abstract][Full Text] [Related]
13. Low micromolar concentrations of 4-aminopyridine facilitate fictive locomotion expressed by the rat spinal cord in vitro. Taccola G; Nistri A Neuroscience; 2004; 126(2):511-20. PubMed ID: 15207368 [TBL] [Abstract][Full Text] [Related]
14. Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. Barthélemy D; Leblond H; Rossignol S J Neurophysiol; 2007 Mar; 97(3):1986-2000. PubMed ID: 17215509 [TBL] [Abstract][Full Text] [Related]
15. Excitatory effects of hypocretin-1 (orexin-A) in the trigeminal motor nucleus are reversed by NMDA antagonism. Peever JH; Lai YY; Siegel JM J Neurophysiol; 2003 May; 89(5):2591-600. PubMed ID: 12611960 [TBL] [Abstract][Full Text] [Related]
16. Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice. Gadotti VM; Tibola D; Paszcuk AF; Rodrigues AL; Calixto JB; Santos AR Brain Res; 2006 Jun; 1093(1):116-22. PubMed ID: 16765330 [TBL] [Abstract][Full Text] [Related]
17. The influence of NMDA receptor agonist and antagonist on morphine state-dependent memory of passive avoidance in mice. Jafari-Sabet M; Zarrindast MR; Rezayat M; Rezayof A; Djahanguiri B Life Sci; 2005 Nov; 78(2):157-63. PubMed ID: 16137707 [TBL] [Abstract][Full Text] [Related]
18. N-methyl-D-aspartic acid causes relaxation of porcine retinal arterioles through an adenosine receptor-dependent mechanism. Holmgaard K; Aalkjaer C; Lambert JD; Bek T Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4590-4. PubMed ID: 18487373 [TBL] [Abstract][Full Text] [Related]
19. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. Bouyer LJ; Rossignol S J Neurophysiol; 2003 Dec; 90(6):3640-53. PubMed ID: 12944535 [TBL] [Abstract][Full Text] [Related]
20. Evidence against the presence of NMDA receptors at a central glutamatergic synapse in leeches. Wu E Invert Neurosci; 2002 Apr; 4(3):157-64. PubMed ID: 12488975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]