BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 12904577)

  • 1. Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins.
    Panina EM; Mironov AA; Gelfand MS
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9912-7. PubMed ID: 12904577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of the Bacillus subtilis Zur regulon.
    Gaballa A; Wang T; Ye RW; Helmann JD
    J Bacteriol; 2002 Dec; 184(23):6508-14. PubMed ID: 12426338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution.
    Suvorova IA; Korostelev YD; Gelfand MS
    PLoS One; 2015; 10(7):e0132618. PubMed ID: 26151451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria.
    Chastanet A; Fert J; Msadek T
    Mol Microbiol; 2003 Feb; 47(4):1061-73. PubMed ID: 12581359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon.
    Gilston BA; Wang S; Marcus MD; Canalizo-Hernández MA; Swindell EP; Xue Y; Mondragón A; O'Halloran TV
    PLoS Biol; 2014 Nov; 12(11):e1001987. PubMed ID: 25369000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2).
    Shin JH; Oh SY; Kim SJ; Roe JH
    J Bacteriol; 2007 Jun; 189(11):4070-7. PubMed ID: 17416659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YkgM and YkgO maintain translation by replacing their paralogs, zinc-binding ribosomal proteins L31 and L36, with identical activities.
    Ueta M; Wada C; Wada A
    Genes Cells; 2020 Aug; 25(8):562-581. PubMed ID: 32559334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an elucidation of the roles of the ribosome during different growth phases in Bacillus subtilis.
    Nanamiya H; Kawamura F
    Biosci Biotechnol Biochem; 2010; 74(3):451-61. PubMed ID: 20208344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group A Streptococcus AdcR Regulon Participates in Bacterial Defense against Host-Mediated Zinc Sequestration and Contributes to Virulence.
    Makthal N; Do H; Wendel BM; Olsen RJ; Helmann JD; Musser JM; Kumaraswami M
    Infect Immun; 2020 Jul; 88(8):. PubMed ID: 32393509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic unbinding of a metalloregulator from DNA for transcription (de)repression in Live Bacteria.
    Jung W; Sengupta K; Wendel BM; Helmann JD; Chen P
    Nucleic Acids Res; 2020 Mar; 48(5):2199-2208. PubMed ID: 32009151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions.
    Gabriel SE; Helmann JD
    J Bacteriol; 2009 Oct; 191(19):6116-22. PubMed ID: 19648245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome.
    Nanamiya H; Akanuma G; Natori Y; Murayama R; Kosono S; Kudo T; Kobayashi K; Ogasawara N; Park SM; Ochi K; Kawamura F
    Mol Microbiol; 2004 Apr; 52(1):273-83. PubMed ID: 15049826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis.
    Gaballa A; Helmann JD
    J Bacteriol; 1998 Nov; 180(22):5815-21. PubMed ID: 9811636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The Pho regulons of bacteria].
    Vershinina OA; Znamenskaia LV
    Mikrobiologiia; 2002; 71(5):581-95. PubMed ID: 12449623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis.
    Akanuma G; Kawamura F; Watanabe S; Watanabe M; Okawa F; Natori Y; Nanamiya H; Asai K; Chibazakura T; Yoshikawa H; Soma A; Hishida T; Kato-Yamada Y
    J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33649148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zur and zinc increase expression of E. coli ribosomal protein L31 through RNA-mediated repression of the repressor L31p.
    Rasmussen RA; Wang S; Camarillo JM; Sosnowski V; Cho BK; Goo YA; Lucks JB; O'Halloran TV
    Nucleic Acids Res; 2022 Dec; 50(22):12739-12753. PubMed ID: 36533433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the Bacillus subtilis yciC gene and insights into the DNA-binding specificity of the zinc-sensing metalloregulator Zur.
    Gabriel SE; Miyagi F; Gaballa A; Helmann JD
    J Bacteriol; 2008 May; 190(10):3482-8. PubMed ID: 18344368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of zinc homeostasis in Agrobacterium tumefaciens via zur and the zinc uptake genes znuABC and zinT.
    Bhubhanil S; Sittipo P; Chaoprasid P; Nookabkaew S; Sukchawalit R; Mongkolsuk S
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2452-2463. PubMed ID: 25227896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins.
    Graham AI; Hunt S; Stokes SL; Bramall N; Bunch J; Cox AG; McLeod CW; Poole RK
    J Biol Chem; 2009 Jul; 284(27):18377-89. PubMed ID: 19377097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular logic of the Zur-regulated zinc deprivation response in Bacillus subtilis.
    Shin JH; Helmann JD
    Nat Commun; 2016 Aug; 7():12612. PubMed ID: 27561249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.