BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 12905538)

  • 1. Architectural properties of distal forelimb muscles in horses, Equus caballus.
    Brown NA; Kawcak CE; McIlwraith CW; Pandy MG
    J Morphol; 2003 Oct; 258(1):106-14. PubMed ID: 12905538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Four forearm flexor muscles of the horse, Equus caballus: anatomy and histochemistry.
    Hermanson JW; Cobb MA
    J Morphol; 1992 Jun; 212(3):269-80. PubMed ID: 1507240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Passive and active mechanical properties of the superficial and deep digital flexor muscles in the forelimbs of anesthetized Thoroughbred horses.
    Swanstrom MD; Zarucco L; Stover SM; Hubbard M; Hawkins DA; Driessen B; Steffey EP
    J Biomech; 2005 Mar; 38(3):579-86. PubMed ID: 15652557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of computer-averaged electromyographic profiles of intrinsic limb muscles in ponies at the walk.
    Jansen MO; van Raaij JA; van den Bogert AJ; Schamhardt HC; Hartman W
    Am J Vet Res; 1992 Dec; 53(12):2343-9. PubMed ID: 1476320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractile behavior of the forelimb digital flexors during steady-state locomotion in horses (Equus caballus): an initial test of muscle architectural hypotheses about in vivo function.
    Butcher MT; Hermanson JW; Ducharme NG; Mitchell LM; Soderholm LV; Bertram JE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Jan; 152(1):100-14. PubMed ID: 18835360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscular design in the equine interosseus muscle.
    Soffler C; Hermanson JW
    J Morphol; 2006 Jun; 267(6):696-704. PubMed ID: 16511864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superficial digital flexor tendon lesions in racehorses as a sequela to muscle fatigue: a preliminary study.
    Butcher MT; Hermanson JW; Ducharme NG; Mitchell LM; Soderholm LV; Bertram JE
    Equine Vet J; 2007 Nov; 39(6):540-5. PubMed ID: 18065313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative forelimb myology and muscular architecture of a juvenile Malayan tapir (Tapirus indicus).
    MacLaren JA; McHorse BK
    J Anat; 2020 Jan; 236(1):85-97. PubMed ID: 31515803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of muscle architecture and fiber characteristics of the superficial and deep digital flexor muscles in the forelimbs of adult horses.
    Zarucco L; Taylor KT; Stover SM
    Am J Vet Res; 2004 Jun; 65(6):819-28. PubMed ID: 15198223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber length variability within the flexor carpi ulnaris and flexor carpi radialis muscles: implications for surgical tendon transfer.
    Fridén J; Lovering RM; Lieber RL
    J Hand Surg Am; 2004 Sep; 29(5):909-14. PubMed ID: 15465243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit.
    Hoyt DF; Wickler SJ; Biewener AA; Cogger EA; De La Paz KL
    J Exp Biol; 2005 Mar; 208(Pt 6):1175-90. PubMed ID: 15767316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force- and moment-generating capacities of muscles in the distal forelimb of the horse.
    Brown NA; Pandy MG; Kawcak CE; McIlwraith CW
    J Anat; 2003 Jul; 203(1):101-13. PubMed ID: 12892409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restored flexor carpi ulnaris function after mere tenotomy explains the recurrence of spastic wrist deformity.
    Kreulen M; Smeulders MJ; Hage JJ
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):429-32. PubMed ID: 15109764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between muscle forces, joint loading and utilization of elastic strain energy in equine locomotion.
    Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG
    J Exp Biol; 2010 Dec; 213(Pt 23):3998-4009. PubMed ID: 21075941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vivo equine forelimb model for short-term recording of peak isometric force in the superficial and deep digital flexor muscles.
    Zarucco L; Swanstrom MD; Driessen B; Hawkins D; Hubbard M; Steffey EP; Stover SM
    Vet Surg; 2003; 32(5):439-50. PubMed ID: 14569572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber architecture of the intrinsic muscles of the shoulder and arm in semiterrestrial and arboreal guenons.
    Anapol F; Gray JP
    Am J Phys Anthropol; 2003 Sep; 122(1):51-65. PubMed ID: 12923904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb.
    Burkholder TJ; Fingado B; Baron S; Lieber RL
    J Morphol; 1994 Aug; 221(2):177-90. PubMed ID: 7932768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horses damp the spring in their step.
    Wilson AM; McGuigan MP; Su A; van Den Bogert AJ
    Nature; 2001 Dec 20-27; 414(6866):895-9. PubMed ID: 11780059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional specialisation of pelvic limb anatomy in horses (Equus caballus).
    Payne RC; Hutchinson JR; Robilliard JJ; Smith NC; Wilson AM
    J Anat; 2005 Jun; 206(6):557-74. PubMed ID: 15960766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining physiological cross-sectional area of extensor carpi radialis longus and brevis as a whole and by regions using 3D computer muscle models created from digitized fiber bundle data.
    Ravichandiran K; Ravichandiran M; Oliver ML; Singh KS; McKee NH; Agur AM
    Comput Methods Programs Biomed; 2009 Sep; 95(3):203-12. PubMed ID: 19395118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.