BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 12905690)

  • 1. [Serial analysis of gene expression in the pituitary adenomas and para-tumor normal pituitary tissues].
    Hu YF; Ren ZY; Li YF; Sun HX; Chang YS; Su CB; Wang RZ; Zuo J; Fang FD
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2002 Dec; 24(6):611-5. PubMed ID: 12905690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies.
    Iacobuzio-Donahue CA; Ashfaq R; Maitra A; Adsay NV; Shen-Ong GL; Berg K; Hollingsworth MA; Cameron JL; Yeo CJ; Kern SE; Goggins M; Hruban RH
    Cancer Res; 2003 Dec; 63(24):8614-22. PubMed ID: 14695172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technology evaluation: SAGE, Genzyme molecular oncology.
    Bartlett J
    Curr Opin Mol Ther; 2001 Feb; 3(1):85-96. PubMed ID: 11249736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro serial analysis of gene expression in normal human choroid and retinal pigment epithelial transcriptomes.
    Kobashi-Hashida M; Ohguro N; Tsujikawa M; Furukawa T; Furukawa A; Hashida N; Tsujikawa K; Nakai K; Tano Y
    Jpn J Ophthalmol; 2005; 49(1):15-22. PubMed ID: 15692769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of microarray and sage techniques in gene expression analysis of human glioblastoma.
    Kavsan VM; Dmitrenko VV; Shostak KO; Bukreieva TV; Vitak NY; Simirenko OE; Malisheva TA; Shamayev MI; Rozumenko VD; Zozulya YA
    Tsitol Genet; 2007; 41(1):36-55. PubMed ID: 17427416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of differential gene expression by bead-based fiber-optic array in nonfunctioning pituitary adenomas.
    Jiang Z; Gui S; Zhang Y
    Horm Metab Res; 2011 May; 43(5):325-30. PubMed ID: 21351040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Mia/Cd-rap gene expression is downregulated by the high-mobility group A proteins in mouse pituitary adenomas.
    De Martino I; Visone R; Palmieri D; Cappabianca P; Chieffi P; Forzati F; Barbieri A; Kruhoffer M; Lombardi G; Fusco A; Fedele M
    Endocr Relat Cancer; 2007 Sep; 14(3):875-86. PubMed ID: 17914116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional profile of rat extraocular muscle by serial analysis of gene expression.
    Cheng G; Porter JD
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1048-58. PubMed ID: 11923246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses.
    Moreno CS; Evans CO; Zhan X; Okor M; Desiderio DM; Oyesiku NM
    Cancer Res; 2005 Nov; 65(22):10214-22. PubMed ID: 16288009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quick gene expression profiling of promyelocytic cell line HL-60.
    Hussain SS; Khalil HS; Bakheet TM; Bin Amer SM
    Saudi Med J; 2003 Nov; 24(11):1199-204. PubMed ID: 14647553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Identification of gastric cancer-related genes by multiple high throughput analysis and data mining].
    Meng LX; Li Q; Xue YJ; Guo RD; Zhang YQ; Song XY
    Zhonghua Wei Chang Wai Ke Za Zhi; 2007 Mar; 10(2):169-72. PubMed ID: 17380461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of gene expression profile in colon cancer using the Cancer Genome Anatomy Project and RNA interference.
    Huang ZG; Ran ZH; Lu W; Xiao SD
    Chin J Dig Dis; 2006; 7(2):97-102. PubMed ID: 16643337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [High throughput screening and analysis of prostate cancer-related genes through mining databases].
    Wu G; Peng L; Jin FS; Li QS
    Ai Zheng; 2006 May; 25(5):645-50. PubMed ID: 16687091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of differential gene expression using fiber-optic bead array and pathway analyses in pituitary adenomas.
    Jiang Z; Gui S; Zhang Y
    J Clin Neurosci; 2011 Oct; 18(10):1386-91. PubMed ID: 21802306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas.
    Bottoni A; Zatelli MC; Ferracin M; Tagliati F; Piccin D; Vignali C; Calin GA; Negrini M; Croce CM; Degli Uberti EC
    J Cell Physiol; 2007 Feb; 210(2):370-7. PubMed ID: 17111382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico identification of breast cancer genes by combined multiple high throughput analyses.
    Shen D; He J; Chang HR
    Int J Mol Med; 2005 Feb; 15(2):205-12. PubMed ID: 15647832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequent loss of the CDKN2C (p18INK4c) gene product in pituitary adenomas.
    Kirsch M; Mörz M; Pinzer T; Schackert HK; Schackert G
    Genes Chromosomes Cancer; 2009 Feb; 48(2):143-54. PubMed ID: 18973139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular profiling of mouse lung tumors: association with tumor progression, lung development, and human lung adenocarcinomas.
    Bonner AE; Lemon WJ; Devereux TR; Lubet RA; You M
    Oncogene; 2004 Feb; 23(5):1166-76. PubMed ID: 14647414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes differentially expressed in thyroid carcinoma identified by comparison of SAGE expression profiles.
    Pauws E; Veenboer GJ; Smit JW; de Vijlder JJ; Morreau H; Ris-Stalpers C
    FASEB J; 2004 Mar; 18(3):560-1. PubMed ID: 14715705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serial analysis of gene expression in sinusoidal endothelial cells from normal and injured mouse liver.
    Nonaka H; Sugano S; Miyajima A
    Biochem Biophys Res Commun; 2004 Nov; 324(1):15-24. PubMed ID: 15464976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.