These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1290585)

  • 1. On the use of the WLF model in polymers and foods.
    Peleg M
    Crit Rev Food Sci Nutr; 1992; 32(1):59-66. PubMed ID: 1290585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of carbohydrate blends close to the glass transition: Temperature and water content dependence of the viscosity in relation to fragility and strength.
    Ubbink J; Dupas-Langlet M
    Food Res Int; 2020 Dec; 138(Pt B):109801. PubMed ID: 33288183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the pectin methylesterase catalyzed de-esterification of pectin in frozen food model systems.
    Terefe NS; Hendrickx M
    Biotechnol Prog; 2002; 18(2):221-8. PubMed ID: 11934288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-viscosity models reassessed.
    Peleg M
    Crit Rev Food Sci Nutr; 2018; 58(15):2663-2672. PubMed ID: 28471301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model.
    Aschenbrenner M; Kulozik U; Foerst P
    Cryobiology; 2012 Dec; 65(3):308-18. PubMed ID: 22964396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insight into Time-Temperature Correlation for Polymer Relaxations Ranging from Secondary Relaxation to Terminal Flow: Application of a Universal and Developed WLF Equation.
    Shangguan Y; Chen F; Jia E; Lin Y; Hu J; Zheng Q
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Arrhenius equation revisited.
    Peleg M; Normand MD; Corradini MG
    Crit Rev Food Sci Nutr; 2012; 52(9):830-51. PubMed ID: 22698273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.
    Shete G; Khomane KS; Bansal AK
    J Pharm Sci; 2014 Jan; 103(1):167-78. PubMed ID: 24186540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying state diagrams to food processing and development.
    Roos Y; Karel M
    Food Technol; 1991 Dec; 45(12):66, 68-71, 107. PubMed ID: 11537636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On modeling changes in food and biosolids at and around their glass transition temperature range.
    Peleg M
    Crit Rev Food Sci Nutr; 1996 Jan; 36(1-2):49-67. PubMed ID: 8747099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The meaning of the "universal" WLF parameters of glass-forming polymer liquids.
    Dudowicz J; Douglas JF; Freed KF
    J Chem Phys; 2015 Jan; 142(1):014905. PubMed ID: 25573581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validity of predictive models of stress relaxation in selected dental polymers.
    Vaidyanathan TK; Vaidyanathan J
    Dent Mater; 2015 Jul; 31(7):799-806. PubMed ID: 25979793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermorheological and mechanical properties of copolymers of lactide, isosorbide, and different phthalic acids.
    Zhang Z; Kricheldorf HR; Friedrich C
    Macromol Rapid Commun; 2015 Jan; 36(2):262-8. PubMed ID: 25429776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the segmental dynamics in semi-crystalline poly(lactic acid) using mechanical spectroscopies.
    Mano JF
    Macromol Biosci; 2005 Apr; 5(4):337-43. PubMed ID: 15844128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytical model to predict the effects of heating rate and applied load on glass transition temperatures of dental porcelain.
    Dehoff PH; Anusavice KJ
    J Dent Res; 1986 May; 65(5):643-7. PubMed ID: 3457817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility.
    Bhugra C; Rambhatla S; Bakri A; Duddu SP; Miller DP; Pikal MJ; Lechuga-Ballesteros D
    J Pharm Sci; 2007 May; 96(5):1258-69. PubMed ID: 17455303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelationships Between Structure and the Properties of Amorphous Solids of Pharmaceutical Interest.
    Zografi G; Newman A
    J Pharm Sci; 2017 Jan; 106(1):5-27. PubMed ID: 27372552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.
    Bochmann ES; Steffens KE; Gryczke A; Wagner KG
    Eur J Pharm Biopharm; 2018 Mar; 124():34-42. PubMed ID: 29221654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous-Amorphous Phase Separation in API/Polymer Formulations.
    Luebbert C; Huxoll F; Sadowski G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glass transition temperature and its relevance in food processing.
    Roos YH
    Annu Rev Food Sci Technol; 2010; 1():469-96. PubMed ID: 22129345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.