These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 12906115)
1. The Sinorhizobium meliloti glycine betaine biosynthetic genes (betlCBA) are induced by choline and highly expressed in bacteroids. Mandon K; Osterås M; Boncompagni E; Trinchant JC; Spennato G; Poggi MC; Le Rudulier D Mol Plant Microbe Interact; 2003 Aug; 16(8):709-19. PubMed ID: 12906115 [TBL] [Abstract][Full Text] [Related]
2. Overexpression of BetS, a Sinorhizobium meliloti high-affinity betaine transporter, in bacteroids from Medicago sativa nodules sustains nitrogen fixation during early salt stress adaptation. Boscari A; Van de Sype G; Le Rudulier D; Mandon K Mol Plant Microbe Interact; 2006 Aug; 19(8):896-903. PubMed ID: 16903355 [TBL] [Abstract][Full Text] [Related]
3. Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Osterås M; Boncompagni E; Vincent N; Poggi MC; Le Rudulier D Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11394-9. PubMed ID: 9736747 [TBL] [Abstract][Full Text] [Related]
4. Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. Pocard JA; Vincent N; Boncompagni E; Smith LT; Poggi MC; Rudulier DL Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1369-1379. PubMed ID: 9141699 [TBL] [Abstract][Full Text] [Related]
5. Mutation in the ntrR gene, a member of the vap gene family, increases the symbiotic efficiency of Sinorhizobium meliloti. Oláh B; Kiss E; Györgypál Z; Borzi J; Cinege G; Csanádi G; Batut J; Kondorosi A; Dusha I Mol Plant Microbe Interact; 2001 Jul; 14(7):887-94. PubMed ID: 11437262 [TBL] [Abstract][Full Text] [Related]
6. Identification of a TRAP transporter for malonate transport and its expression regulated by GtrA from Sinorhizobium meliloti. Chen AM; Wang YB; Jie S; Yu AY; Luo L; Yu GQ; Zhu JB; Wang YZ Res Microbiol; 2010 Sep; 161(7):556-64. PubMed ID: 20594941 [TBL] [Abstract][Full Text] [Related]
7. The complex bet promoters of Escherichia coli: regulation by oxygen (ArcA), choline (BetI), and osmotic stress. Lamark T; Røkenes TP; McDougall J; Strøm AR J Bacteriol; 1996 Mar; 178(6):1655-62. PubMed ID: 8626294 [TBL] [Abstract][Full Text] [Related]
8. The Sinorhizobium meliloti ABC transporter Cho is highly specific for choline and expressed in bacteroids from Medicago sativa nodules. Dupont L; Garcia I; Poggi MC; Alloing G; Mandon K; Le Rudulier D J Bacteriol; 2004 Sep; 186(18):5988-96. PubMed ID: 15342567 [TBL] [Abstract][Full Text] [Related]
9. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa. Wippel K; Long SR J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825 [TBL] [Abstract][Full Text] [Related]
10. The typA gene is required for stress adaptation as well as for symbiosis of Sinorhizobium meliloti 1021 with certain Medicago truncatula lines. Kiss E; Huguet T; Poinsot V; Batut J Mol Plant Microbe Interact; 2004 Mar; 17(3):235-44. PubMed ID: 15000390 [TBL] [Abstract][Full Text] [Related]
11. Identification of a hydroxyproline transport system in the legume endosymbiont Sinorhizobium meliloti. Maclean AM; White CE; Fowler JE; Finan TM Mol Plant Microbe Interact; 2009 Sep; 22(9):1116-27. PubMed ID: 19656046 [TBL] [Abstract][Full Text] [Related]
12. Sinorhizobium meliloti nfe (nodulation formation efficiency) genes exhibit temporal and spatial expression patterns similar to those of genes involved in symbiotic nitrogen fixation. García-Rodríguez FM; Toro N Mol Plant Microbe Interact; 2000 Jun; 13(6):583-91. PubMed ID: 10830257 [TBL] [Abstract][Full Text] [Related]
13. Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Jamet A; Sigaud S; Van de Sype G; Puppo A; Hérouart D Mol Plant Microbe Interact; 2003 Mar; 16(3):217-25. PubMed ID: 12650453 [TBL] [Abstract][Full Text] [Related]
14. Osmotic stress response in Acinetobacter baylyi: identification of a glycine-betaine biosynthesis pathway and regulation of osmoadaptive choline uptake and glycine-betaine synthesis through a choline-responsive BetI repressor. Scholz A; Stahl J; de Berardinis V; Müller V; Averhoff B Environ Microbiol Rep; 2016 Apr; 8(2):316-22. PubMed ID: 26910138 [TBL] [Abstract][Full Text] [Related]
15. Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida. Galvão TC; de Lorenzo V; Cánovas D Mol Microbiol; 2006 Dec; 62(6):1643-54. PubMed ID: 17116241 [TBL] [Abstract][Full Text] [Related]
16. Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Barsch A; Tellström V; Patschkowski T; Küster H; Niehaus K Mol Plant Microbe Interact; 2006 Sep; 19(9):998-1013. PubMed ID: 16941904 [TBL] [Abstract][Full Text] [Related]
17. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. Capela D; Filipe C; Bobik C; Batut J; Bruand C Mol Plant Microbe Interact; 2006 Apr; 19(4):363-72. PubMed ID: 16610739 [TBL] [Abstract][Full Text] [Related]
18. Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043, USA. Cánovas D; Vargas C; Kneip S; Morón MA; Ventosa A; Bremer E; Nieto JNJ Microbiology (Reading); 2000 Feb; 146 ( Pt 2)():455-463. PubMed ID: 10708384 [TBL] [Abstract][Full Text] [Related]