These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12906211)

  • 1. Test of GEANT3 and GEANT4 nuclear models for 160 MeV protons stopping in CH2.
    Paganetti H; Gottschalk B
    Med Phys; 2003 Jul; 30(7):1926-31. PubMed ID: 12906211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of electron and isotopes dose point kernels with FLUKA Monte Carlo code for dosimetry in nuclear medicine therapy.
    Botta F; Mairani A; Battistoni G; Cremonesi M; Di Dia A; Fassò A; Ferrari A; Ferrari M; Paganelli G; Pedroli G; Valente M
    Med Phys; 2011 Jul; 38(7):3944-54. PubMed ID: 21858991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear interactions of 160 MeV protons stopping in copper: a test of Monte Carlo nuclear models.
    Gottschalk B; Platais R; Paganetti H
    Med Phys; 1999 Dec; 26(12):2597-601. PubMed ID: 10619245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial beam size study for passive scatter proton therapy. I. Monte Carlo verification.
    Polf JC; Harvey MC; Titt U; Newhauser WD; Smith AR
    Med Phys; 2007 Nov; 34(11):4213-8. PubMed ID: 18072485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdosimetry distributions for 40-200 MeV protons.
    Palajová Z; Spurný F; Davídková M
    Radiat Prot Dosimetry; 2006; 121(4):376-81. PubMed ID: 16782987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test of the nuclear interaction model in SHIELD-HIT and comparison to energy distributions from GEANT4.
    Henkner K; Sobolevsky N; Jäkel O; Paganetti H
    Phys Med Biol; 2009 Nov; 54(22):N509-17. PubMed ID: 19864697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distributions of secondary particles in proton and carbon-ion therapy: a comparison between GATE/Geant4 and FLUKA Monte Carlo codes.
    Robert C; Dedes G; Battistoni G; Böhlen TT; Buvat I; Cerutti F; Chin MP; Ferrari A; Gueth P; Kurz C; Lestand L; Mairani A; Montarou G; Nicolini R; Ortega PG; Parodi K; Prezado Y; Sala PR; Sarrut D; Testa E
    Phys Med Biol; 2013 May; 58(9):2879-99. PubMed ID: 23571094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.
    Sterpin E; Sorriaux J; Vynckier S
    Med Phys; 2013 Nov; 40(11):111705. PubMed ID: 24320413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.
    Paganetti H; Jiang H; Lee SY; Kooy HM
    Med Phys; 2004 Jul; 31(7):2107-18. PubMed ID: 15305464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of water equivalent ratios for various materials at proton energies ranging 10-500 MeV using MCNP, FLUKA, and GEANT4 Monte Carlo codes.
    Safigholi H; Song WY
    Phys Med Biol; 2018 Jul; 63(15):155010. PubMed ID: 29968580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spread-out Bragg peak and monitor units calculation with the Monte Carlo code MCNPX.
    Hérault J; Iborra N; Serrano B; Chauvel P
    Med Phys; 2007 Feb; 34(2):680-8. PubMed ID: 17388186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm.
    Newhauser W; Fontenot J; Zheng Y; Polf J; Titt U; Koch N; Zhang X; Mohan R
    Phys Med Biol; 2007 Aug; 52(15):4569-84. PubMed ID: 17634651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutrons from fragmentation of light nuclei in tissue-like media: a study with the GEANT4 toolkit.
    Pshenichnov I; Mishustin I; Greiner W
    Phys Med Biol; 2005 Dec; 50(23):5493-507. PubMed ID: 16306647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo modeling in CT-based geometries: dosimetry for biological modeling experiments with particle beam radiation.
    Diffenderfer ES; Dolney D; Schaettler M; Sanzari JK; McDonough J; Cengel KA
    J Radiat Res; 2014 Mar; 55(2):364-72. PubMed ID: 24309720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.
    Yoo SH; Cho I; Cho S; Song Y; Jung WG; Kim DH; Shin D; Lee SB; Pae KH; Park SY
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):635-44. PubMed ID: 25154880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Initial beam size study for passive scatter proton therapy. II. Changes in delivered depth dose profiles.
    Polf JC; Harvey MC; Smith AR
    Med Phys; 2007 Nov; 34(11):4219-22. PubMed ID: 18072486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical note: overprediction of dose with default PRESTA-I boundary crossing in DOSXYZnrc and BEAMnrc.
    Walters BR; Kawrakow I
    Med Phys; 2007 Feb; 34(2):647-50. PubMed ID: 17388182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams.
    Newhauser W; Koch N; Hummel S; Ziegler M; Titt U
    Phys Med Biol; 2005 Nov; 50(22):5229-49. PubMed ID: 16264250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam.
    Ding GX
    Med Phys; 2002 Nov; 29(11):2459-63. PubMed ID: 12462709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.