BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 12906248)

  • 1. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images.
    Aykac D; Hoffman EA; McLennan G; Reinhardt JM
    IEEE Trans Med Imaging; 2003 Aug; 22(8):940-50. PubMed ID: 12906248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-stage method for the 3D reconstruction of the tracheobronchial tree from CT scans.
    Rosell J; Cabras P
    Comput Med Imaging Graph; 2013; 37(7-8):430-7. PubMed ID: 23981684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.
    Xu Z; Bagci U; Foster B; Mansoor A; Udupa JK; Mollura DJ
    Med Image Anal; 2015 Aug; 24(1):1-17. PubMed ID: 26026778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothing lung segmentation surfaces in three-dimensional X-ray CT images using anatomic guidance.
    Ukil S; Reinhardt JM
    Acad Radiol; 2005 Dec; 12(12):1502-11. PubMed ID: 16321738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Region growing algorithm combined with morphology and skeleton analysis for segmenting airway tree in CT images.
    Duan HH; Gong J; Sun XW; Nie SD
    J Xray Sci Technol; 2020; 28(2):311-331. PubMed ID: 32039883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals.
    Chaturvedi A; Lee Z
    Phys Med Biol; 2005 Apr; 50(7):1405-19. PubMed ID: 15798332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional visualization and morphometry of small airways from microfocal X-ray computed tomography.
    Sera T; Fujioka H; Yokota H; Makinouchi A; Himeno R; Schroter RC; Tanishita K
    J Biomech; 2003 Nov; 36(11):1587-94. PubMed ID: 14522199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [3D region growing algorithm driven by morphological dilation for airway tree segmentation in image guided therapy].
    Wang L; Gao X; Zhang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):679-83, 691. PubMed ID: 24059036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation.
    Fetita CI; Prêteux F; Beigelman-Aubry C; Grenier P
    IEEE Trans Med Imaging; 2004 Nov; 23(11):1353-64. PubMed ID: 15554124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. About objective 3-d analysis of airway geometry in computerized tomography.
    Weinheimer O; Achenbach T; Bletz C; Duber C; Kauczor HU; Heussel CP
    IEEE Trans Med Imaging; 2008 Jan; 27(1):64-74. PubMed ID: 18270063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated system for three-dimensional bronchial morphology analysis using volumetric multidetector computed tomography of the chest.
    Venkatraman R; Raman R; Raman B; Moss RB; Rubin GD; Mathers LH; Robinson TE
    J Digit Imaging; 2006 Jun; 19(2):132-9. PubMed ID: 16341571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atlas-driven lung lobe segmentation in volumetric X-ray CT images.
    Zhang L; Hoffman EA; Reinhardt JM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):1-16. PubMed ID: 16398410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matching and anatomical labeling of human airway tree.
    Tschirren J; McLennan G; Palágyi K; Hoffman EA; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1540-7. PubMed ID: 16353371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images.
    Hu S; Hoffman EA; Reinhardt JM
    IEEE Trans Med Imaging; 2001 Jun; 20(6):490-8. PubMed ID: 11437109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional airway tree architecture and pulmonary function.
    Pu J; Leader JK; Meng X; Whiting B; Wilson D; Sciurba FC; Reilly JJ; Bigbee WL; Siegfried J; Gur D
    Acad Radiol; 2012 Nov; 19(11):1395-401. PubMed ID: 22884402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the contribution of native tracheobronchial structure to lung function: CT assessment of airway morphology in never smokers.
    Diaz AA; Rahaghi FN; Ross JC; Harmouche R; Tschirren J; San José Estépar R; Washko GR;
    Respir Res; 2015 Feb; 16(1):23. PubMed ID: 25848985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of pulmonary airway tree structures.
    Palágyi K; Tschirren J; Hoffman EA; Sonka M
    Comput Biol Med; 2006 Sep; 36(9):974-96. PubMed ID: 16076463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of airways with three-dimensional quantitative thin-section CT: in vitro and in vivo validation.
    Montaudon M; Berger P; de Dietrich G; Braquelaire A; Marthan R; Tunon-de-Lara JM; Laurent F
    Radiology; 2007 Feb; 242(2):563-72. PubMed ID: 17179398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease.
    Petersen J; Nielsen M; Lo P; Nordenmark LH; Pedersen JH; Wille MM; Dirksen A; de Bruijne M
    Med Image Anal; 2014 Apr; 18(3):531-41. PubMed ID: 24603047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.