These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12906309)

  • 21. Biodegradable Microcapsules Prepared by Self-Healing of Porous Microspheres.
    Na XM; Gao F; Zhang LY; Su ZG; Ma GH
    ACS Macro Lett; 2012 Jun; 1(6):697-700. PubMed ID: 35607090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of uniform-sized PELA microspheres with high encapsulation efficiency of antigen by premix membrane emulsification.
    Wei Q; Wei W; Tian R; Wang LY; Su ZG; Ma GH
    J Colloid Interface Sci; 2008 Jul; 323(2):267-73. PubMed ID: 18501376
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene succinate-co-adipate) and poly(butylene terephthalate-co-adipate) as drug encapsulation systems.
    Brunner CT; Baran ET; Pinho ED; Reis RL; Neves NM
    Colloids Surf B Biointerfaces; 2011 Jun; 84(2):498-507. PubMed ID: 21376545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Encapsulating acetaminophen into poly(L-lactide) microcapsules by solvent-evaporation technique in an O/W emulsion.
    Lai MK; Tsiang RC
    J Microencapsul; 2004 May; 21(3):307-16. PubMed ID: 15204597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water and Oil Insoluble PEGDA-Based Microcapsule: Biocompatible and Multicomponent Encapsulation.
    Nam C; Yoon J; Ryu SA; Choi CH; Lee H
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40366-40371. PubMed ID: 30422614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradable polymer microcapsules fabrication through a template-free approach.
    Yu X; Zhao Z; Nie W; Deng R; Liu S; Liang R; Zhu J; Ji X
    Langmuir; 2011 Aug; 27(16):10265-73. PubMed ID: 21766809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA.
    Perez C; Sanchez A; Putnam D; Ting D; Langer R; Alonso MJ
    J Control Release; 2001 Jul; 75(1-2):211-24. PubMed ID: 11451511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier.
    Rameez S; Alosta H; Palmer AF
    Bioconjug Chem; 2008 May; 19(5):1025-32. PubMed ID: 18442283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porosity and semipermeability of hemoglobin-loaded polymeric nanoparticles as potential blood substitutes.
    Sheng Y; Liu C; Yuan Y; Zhang X; Shan X; Xu F
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):631-642. PubMed ID: 19582859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide).
    Zhang J; Wang LQ; Wang H; Tu K
    Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications.
    Ma G
    J Control Release; 2014 Nov; 193():324-40. PubMed ID: 25218676
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of uniform-sized PLA microcapsules by combining Shirasu porous glass membrane emulsification technique and multiple emulsion-solvent evaporation method.
    Liu R; Ma G; Meng FT; Su ZG
    J Control Release; 2005 Mar; 103(1):31-43. PubMed ID: 15710498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of microcapsules and control of their morphology.
    Kiyoyama S; Shiomori K; Kawano Y; Hatate Y
    J Microencapsul; 2003; 20(4):497-508. PubMed ID: 12851050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Submicron biodegradable polymer membrane hemoglobin nanocapsules as potential blood substitutes: a preliminary report.
    Yu WP; Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):889-93. PubMed ID: 7994414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering.
    Lins LC; Wianny F; Livi S; Hidalgo IA; Dehay C; Duchet-Rumeau J; GĂ©rard JF
    Biomacromolecules; 2016 Oct; 17(10):3172-3187. PubMed ID: 27629596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Preparation of bovine hemoglobin-loaded nanoparticles used as blood substitutes and establishment of reduction system].
    Zhang X; Yuan Y; Shan X; Sheng Y; Zhao J; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1332-7. PubMed ID: 19166204
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends.
    Jiang W; Schwendeman SP
    Pharm Res; 2001 Jun; 18(6):878-85. PubMed ID: 11474795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Encapsulation of water-soluble drugs by an o/o/o-solvent extraction microencapsulation method.
    Elkharraz K; Ahmed AR; Dashevsky A; Bodmeier R
    Int J Pharm; 2011 May; 409(1-2):89-95. PubMed ID: 21356287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and in vitro characterization of dexamethasone-loaded poly(D,L-lactic acid) microspheres embedded in poly(ethylene glycol)-poly({varepsilon}-caprolactone)-poly(ethylene glycol) hydrogel for orthopedic tissue engineering.
    Fan M; Guo Q; Luo J; Luo F; Xie P; Tang X; Qian Z
    J Biomater Appl; 2013 Aug; 28(2):288-97. PubMed ID: 22561978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Preparation of hemoglobin-loaded nanoparticles and safety evaluation in vitro and in vivo].
    Zhao J; Shan X; Sheng Y; Wu F; Yuan Y; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):584-8. PubMed ID: 18693435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.