These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12906358)

  • 21. Physical and functional mapping of two cointegrate plasmids derived from RP4 and TOL plasmid pDK1.
    Shaw LE; Williams PA
    J Gen Microbiol; 1988 Sep; 134(9):2463-74. PubMed ID: 3076182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The styrene-responsive StyS/StyR regulation system controls expression of an auxiliary phenylacetyl-coenzyme A ligase: implications for rapid metabolic coupling of the styrene upper- and lower-degradative pathways.
    del Peso-Santos T; Shingler V; Perera J
    Mol Microbiol; 2008 Jul; 69(2):317-30. PubMed ID: 18544072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway.
    Franklin FC; Bagdasarian M; Bagdasarian MM; Timmis KN
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7458-62. PubMed ID: 6950388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of degradative genes of Pseudomonas putida in Caulobacter crescentus.
    Chatterjee DK; Chatterjee P
    J Bacteriol; 1987 Jul; 169(7):2962-6. PubMed ID: 3597317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3.
    Ward PG; de Roo G; O'Connor KE
    Appl Environ Microbiol; 2005 Apr; 71(4):2046-52. PubMed ID: 15812037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes.
    de Lorenzo V; Eltis L; Kessler B; Timmis KN
    Gene; 1993 Jan; 123(1):17-24. PubMed ID: 8380783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Taxis of Pseudomonas putida F1 toward phenylacetic acid is mediated by the energy taxis receptor Aer2.
    Luu RA; Schneider BJ; Ho CC; Nesteryuk V; Ngwesse SE; Liu X; Parales JV; Ditty JL; Parales RE
    Appl Environ Microbiol; 2013 Apr; 79(7):2416-23. PubMed ID: 23377939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial phenylalanine and phenylacetate catabolic pathway revealed.
    Teufel R; Mascaraque V; Ismail W; Voss M; Perera J; Eisenreich W; Haehnel W; Fuchs G
    Proc Natl Acad Sci U S A; 2010 Aug; 107(32):14390-5. PubMed ID: 20660314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chromosomal location of TOL plasmid DNA in Pseudomonas putida.
    Sinclair MI; Maxwell PC; Lyon BR; Holloway BW
    J Bacteriol; 1986 Dec; 168(3):1302-8. PubMed ID: 3782038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways.
    Bertini L; Cafaro V; Proietti S; Caporale C; Capasso P; Caruso C; Di Donato A
    Biochimie; 2013 Feb; 95(2):241-50. PubMed ID: 23009925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth-phase-dependent expression of the Pseudomonas putida TOL plasmid pWW0 catabolic genes.
    Hugouvieux-Cotte-Pattat N; Köhler T; Rekik M; Harayama S
    J Bacteriol; 1990 Dec; 172(12):6651-60. PubMed ID: 2254244
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemistry, genetics and physiology of microbial styrene degradation.
    O'Leary ND; O'Connor KE; Dobson AD
    FEMS Microbiol Rev; 2002 Nov; 26(4):403-17. PubMed ID: 12413667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stability of TOL plasmid pWW0 in Pseudomonas putida mt-2 under non-selective conditions in continuous culture.
    Duetz WA; van Andel JG
    J Gen Microbiol; 1991 Jun; 137(6):1369-74. PubMed ID: 1919511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways.
    Marqués S; Ramos JL
    Mol Microbiol; 1993 Sep; 9(5):923-9. PubMed ID: 7934920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aromatic hydrocarbon compound degradation of phenylacetic acid by indigenous bacterial
    Huang F; Li X; Guo J; Feng H; Yang F
    J Toxicol Environ Health A; 2019; 82(22):1164-1171. PubMed ID: 31833448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Genetic control of naphthalene biodegradation by a strain of Pseudomonas sp. 8909N].
    Kosheleva IA; Sokolov SL; Balashova NV; Filonov AE; Meleshko EI; Gaiazov RR; Boronin AM
    Genetika; 1997 Jun; 33(6):762-8. PubMed ID: 9289413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aromatic and aliphatic hydrocarbon consumption and transformation by the styrene degrading strain Pseudomonas putida CA-3.
    Dunn HD; Curtin T; O'riordan MA; Coen P; Kieran PM; Malone DM; O'Connor KE
    FEMS Microbiol Lett; 2005 Aug; 249(2):267-73. PubMed ID: 16002236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of the xylDLEGF promoter of the TOL toluene-xylene degradation pathway by overproduction of the xylS regulatory gene product.
    Spooner RA; Bagdasarian M; Franklin FC
    J Bacteriol; 1987 Aug; 169(8):3581-6. PubMed ID: 3301806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolical shifts towards alternative BTEX biodegradation intermediates induced by perfluorinated compounds in firefighting foams.
    Montagnolli RN; Lopes PRM; Cruz JM; Claro MT; Quiterio GM; Bidoia ED
    Chemosphere; 2017 Apr; 173():49-60. PubMed ID: 28107715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.