These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12906362)

  • 1. Transporters involved in uptake of di- and tricarboxylates in Bacillus subtilis.
    Krom BP; Warner JB; Konings WN; Lolkema JS
    Antonie Van Leeuwenhoek; 2003; 84(1):69-80. PubMed ID: 12906362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis.
    Groeneveld M; Weme RG; Duurkens RH; Slotboom DJ
    J Bacteriol; 2010 Jun; 192(11):2900-7. PubMed ID: 20363944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria. Bacterial expression, reconstitution, functional characterization, and tissue distribution.
    Picault N; Palmieri L; Pisano I; Hodges M; Palmieri F
    J Biol Chem; 2002 Jul; 277(27):24204-11. PubMed ID: 11978797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis.
    Asai K; Baik SH; Kasahara Y; Moriya S; Ogasawara N
    Microbiology (Reading); 2000 Feb; 146 ( Pt 2)():263-271. PubMed ID: 10708364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD.
    Kappes RM; Kempf B; Bremer E
    J Bacteriol; 1996 Sep; 178(17):5071-9. PubMed ID: 8752321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium.
    Tanaka K; Kobayashi K; Ogasawara N
    Microbiology (Reading); 2003 Sep; 149(Pt 9):2317-2329. PubMed ID: 12949159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system.
    Schneider R; Hantke K
    Mol Microbiol; 1993 Apr; 8(1):111-21. PubMed ID: 8388528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport capabilities encoded within the Bacillus subtilis genome.
    Saier MH; Goldman SR; Maile RR; Moreno MS; Weyler W; Yang N; Paulsen IT
    J Mol Microbiol Biotechnol; 2002 Jan; 4(1):37-67. PubMed ID: 11763970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange.
    Zientz E; Six S; Unden G
    J Bacteriol; 1996 Dec; 178(24):7241-7. PubMed ID: 8955408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins.
    Que Q; Helmann JD
    Mol Microbiol; 2000 Mar; 35(6):1454-68. PubMed ID: 10760146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated.
    Ahmed M; Lyass L; Markham PN; Taylor SS; Vázquez-Laslop N; Neyfakh AA
    J Bacteriol; 1995 Jul; 177(14):3904-10. PubMed ID: 7608059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant.
    Kempf B; Gade J; Bremer E
    J Bacteriol; 1997 Oct; 179(20):6213-20. PubMed ID: 9335265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the proton/glutamate symport protein of Bacillus subtilis and its functional expression in Escherichia coli.
    Tolner B; Ubbink-Kok T; Poolman B; Konings WN
    J Bacteriol; 1995 May; 177(10):2863-9. PubMed ID: 7751298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sensor kinase DctS forms a tripartite sensor unit with DctB and DctA for sensing C4-dicarboxylates in Bacillus subtilis.
    Graf S; Schmieden D; Tschauner K; Hunke S; Unden G
    J Bacteriol; 2014 Mar; 196(5):1084-93. PubMed ID: 24375102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dicarboxylate transport by rhizobia.
    Yurgel SN; Kahn ML
    FEMS Microbiol Rev; 2004 Oct; 28(4):489-501. PubMed ID: 15374663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters.
    Baranova NN; Danchin A; Neyfakh AA
    Mol Microbiol; 1999 Mar; 31(5):1549-59. PubMed ID: 10200972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum.
    Youn JW; Jolkver E; Krämer R; Marin K; Wendisch VF
    J Bacteriol; 2008 Oct; 190(19):6458-66. PubMed ID: 18658264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus subtilis contains a cyclodextrin-binding protein which is part of a putative ABC-transporter.
    Kamionka A; Dahl MK
    FEMS Microbiol Lett; 2001 Oct; 204(1):55-60. PubMed ID: 11682178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea.
    Kelly DJ; Thomas GH
    FEMS Microbiol Rev; 2001 Aug; 25(4):405-24. PubMed ID: 11524131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria.
    Forward JA; Behrendt MC; Wyborn NR; Cross R; Kelly DJ
    J Bacteriol; 1997 Sep; 179(17):5482-93. PubMed ID: 9287004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.