These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 12906543)
1. Is the electron radiation length constant at high energies? Hansen HD; Uggerhøj UI; Biino C; Ballestrero S; Mangiarotti A; Sona P; Ketel TJ; Vilakazi ZZ Phys Rev Lett; 2003 Jul; 91(1):014801. PubMed ID: 12906543 [TBL] [Abstract][Full Text] [Related]
2. Electromagnetic cascade showers in lead with the Landau-Pomeranchuk-Migdal effect included: Average behavior of the one-dimensional LPM shower in lead. Misaki A Phys Rev D Part Fields; 1989 Nov; 40(9):3086-3096. PubMed ID: 10012165 [No Abstract] [Full Text] [Related]
3. Experimental examination of the Landau-Pomeranchuk-Migdal effect by high-energy electromagnetic cascade showers in lead. Kasahara K Phys Rev D Part Fields; 1985 Jun; 31(11):2737-2747. PubMed ID: 9955588 [No Abstract] [Full Text] [Related]
4. Local Monte Carlo implementation of the non-Abelian Landau-Pomeranschuk-Migdal effect. Zapp K; Stachel J; Wiedemann UA Phys Rev Lett; 2009 Oct; 103(15):152302. PubMed ID: 19905625 [TBL] [Abstract][Full Text] [Related]
5. Landau-Pomeranchuk-Migdal effect in QCD and radiative energy loss in a quark-gluon plasma. Wang XN; Gyulassy M; Plümer M Phys Rev D Part Fields; 1995 Apr; 51(7):3436-3446. PubMed ID: 10018812 [No Abstract] [Full Text] [Related]
6. Are Gluon Showers inside a Quark-Gluon Plasma Strongly Coupled? A Theorist's Test. Arnold P; Elgedawy O; Iqbal S Phys Rev Lett; 2023 Oct; 131(16):162302. PubMed ID: 37925722 [TBL] [Abstract][Full Text] [Related]
7. First measurements of the unique influence of spin on the energy loss of ultrarelativistic electrons in strong electromagnetic fields. Kirsebom K; Mikkelsen U; Uggerhøj E; Elsener K; Ballestrero S; Sona P; Vilakazi ZZ Phys Rev Lett; 2001 Jul; 87(5):054801. PubMed ID: 11497778 [TBL] [Abstract][Full Text] [Related]
8. Observation of deflection of a beam of multi-GeV electrons by a thin crystal. Wienands U; Markiewicz TW; Nelson J; Noble RJ; Turner JL; Uggerhøj UI; Wistisen TN; Bagli E; Bandiera L; Germogli G; Guidi V; Mazzolari A; Holtzapple R; Miller M Phys Rev Lett; 2015 Feb; 114(7):074801. PubMed ID: 25763959 [TBL] [Abstract][Full Text] [Related]
9. Ultra-relativistic electrons in Jupiter's radiation belts. Bolton SJ; Janssen M; Thorne R; Levin S; Klein M; Gulkis S; Bastian T; Sault R; Elachi C; Hofstadter M; Bunker A; Dulk G; Gudim E; Hamilton G; Johnson WT; Leblanc Y; Liepack O; McLeod R; Roller J; Roth L; West R Nature; 2002 Feb; 415(6875):987-91. PubMed ID: 11875557 [TBL] [Abstract][Full Text] [Related]
10. Modelling low energy electron and positron tracks for biomedical applications. Sanz AG; Fuss MC; Muñoz A; Blanco F; Limão-Vieira P; Brunger MJ; Buckman SJ; García G Int J Radiat Biol; 2012 Jan; 88(1-2):71-6. PubMed ID: 21923304 [TBL] [Abstract][Full Text] [Related]
11. An Accurate Measurement of the Landau-Pomeranchuk-Migdal Effect. Anthony PL; Becker-Szendy R; Bosted PE; Cavalli-Sforza M; Keller LP; Kelley LA; Klein SR; Niemi G; Perl ML; Rochester LS; White JL Phys Rev Lett; 1995 Sep; 75(10):1949-1952. PubMed ID: 10059170 [No Abstract] [Full Text] [Related]
12. Migdal Effect in Semiconductors. Knapen S; Kozaczuk J; Lin T Phys Rev Lett; 2021 Aug; 127(8):081805. PubMed ID: 34477426 [TBL] [Abstract][Full Text] [Related]
13. Are all photon radiations similar in large absorbers?--a comparison of electron spectra. Kellerer AM; Roos H Radiat Prot Dosimetry; 2005; 113(3):245-50. PubMed ID: 15695239 [TBL] [Abstract][Full Text] [Related]
14. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Blumenfeld I; Clayton CE; Decker FJ; Hogan MJ; Huang C; Ischebeck R; Iverson R; Joshi C; Katsouleas T; Kirby N; Lu W; Marsh KA; Mori WB; Muggli P; Oz E; Siemann RH; Walz D; Zhou M Nature; 2007 Feb; 445(7129):741-4. PubMed ID: 17301787 [TBL] [Abstract][Full Text] [Related]
15. Collisional, radiative and total electron interaction in compound semiconductor detectors and solid state nuclear track detectors: effective atomic number and electron density. Kurudirek M; Kurudirek SV Appl Radiat Isot; 2015 May; 99():54-8. PubMed ID: 25702888 [TBL] [Abstract][Full Text] [Related]
16. Direct measurement of the formation length of photons. Andersen KK; Andersen SL; Esberg J; Knudsen H; Mikkelsen R; Uggerhøj UI; Sona P; Mangiarotti A; Ketel TJ; Ballestrero S; Phys Rev Lett; 2012 Feb; 108(7):071802. PubMed ID: 22401193 [TBL] [Abstract][Full Text] [Related]
17. Simulation and measurement of the radiation field of the 1.4-GeV electron beam dump of the FERMI free-electron laser. Fröhlich L; Casarin K; Vascotto A Radiat Prot Dosimetry; 2015 Feb; 163(2):141-7. PubMed ID: 24757175 [TBL] [Abstract][Full Text] [Related]
18. Landau-Pomeranchuk-Migdal effect for finite targets. Blankenbecler R; Drell SD Phys Rev D Part Fields; 1996 Jun; 53(11):6265-6281. PubMed ID: 10019914 [No Abstract] [Full Text] [Related]
19. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects. Emfietzoglou D; Kyriakou I; Garcia-Molina R; Abril I; Nikjoo H Radiat Res; 2013 Nov; 180(5):499-513. PubMed ID: 24131062 [TBL] [Abstract][Full Text] [Related]
20. Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions). Bulanov SV; Esirkepov TZh; Kando M; Koga JK; Bulanov SS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056605. PubMed ID: 22181534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]