These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12906552)

  • 1. Pressure evolution of the excess wing in a type-B glass former.
    Casalini R; Roland CM
    Phys Rev Lett; 2003 Jul; 91(1):015702. PubMed ID: 12906552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of excess wing and beta-process in simple glass formers.
    Gainaru C; Kahlau R; Rössler EA; Böhmer R
    J Chem Phys; 2009 Nov; 131(18):184510. PubMed ID: 19916615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excess wing in the dielectric loss of glass formers: A johari-goldstein beta relaxation?
    Schneider U; Brand R; Lunkenheimer P; Loidl A
    Phys Rev Lett; 2000 Jun; 84(24):5560-3. PubMed ID: 10990994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glassy dynamics under superhigh pressure.
    Pronin AA; Kondrin MV; Lyapin AG; Brazhkin VV; Volkov AA; Lunkenheimer P; Loidl A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041503. PubMed ID: 20481727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary and secondary relaxations in bis-5-hydroxypentylphthalate.
    Maślanka S; Paluch M; Sułkowski WW; Roland CM
    J Chem Phys; 2005 Feb; 122(8):84511. PubMed ID: 15836067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol.
    Yardimci H; Leheny RL
    J Chem Phys; 2006 Jun; 124(21):214503. PubMed ID: 16774419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergence of the genuine Johari-Goldstein secondary relaxation in m-fluoroaniline after suppression of hydrogen-bond-induced clusters by elevating temperature and pressure.
    Hensel-Bielówka S; Paluch M; Ngai KL
    J Chem Phys; 2005 Jul; 123(1):014502. PubMed ID: 16035850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamentals of ionic conductivity relaxation gained from study of procaine hydrochloride and procainamide hydrochloride at ambient and elevated pressure.
    Wojnarowska Z; Swiety-Pospiech A; Grzybowska K; Hawelek L; Paluch M; Ngai KL
    J Chem Phys; 2012 Apr; 136(16):164507. PubMed ID: 22559496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous narrowing of the structural relaxation dispersion of tris(dimethylsiloxy)phenylsilane at elevated pressures.
    Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Phys Chem B; 2006 Apr; 110(15):7678-81. PubMed ID: 16610860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between the alpha-relaxation and Johari-Goldstein beta-relaxation of a component in binary miscible mixtures of glass-formers.
    Capaccioli S; Ngai KL
    J Phys Chem B; 2005 May; 109(19):9727-35. PubMed ID: 16852172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of large hydrostatic pressure on the dielectric loss spectrum of type- a glass formers.
    Hensel-Bielowka S; Pawlus S; Roland CM; Zioło J; Paluch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):050501. PubMed ID: 15244799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on "Origin of the excess wing and slow beta relaxation of glass formers: a unified picture of local orientational fluctuations".
    Ngai KL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):063501; discussion 063502. PubMed ID: 15697419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics and Near-
    Hellwig H; Nowok A; Peksa P; Dulski M; Musioł R; Pawlus S; Kuś P
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38138995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of spontaneous change in the localized motions of D-sorbitol glass.
    Power G; Vij JK; Johari GP
    J Chem Phys; 2006 Feb; 124(7):74509. PubMed ID: 16497059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol.
    Ngai KL; Wang LM
    J Phys Chem B; 2019 Jan; 123(3):714-719. PubMed ID: 30601008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.