These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12906631)

  • 1. Polaritonic stop-band transparency via exciton-biexciton coupling in CuCl.
    Chesi S; Artoni M; La Rocca GC; Bassani F; Mysyrowicz A
    Phys Rev Lett; 2003 Aug; 91(5):057402. PubMed ID: 12906631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crossover from exciton to biexciton polaritons in semiconductor microcavities.
    Saba M; Quochi F; Ciuti C; Oesterle U; Staehli JL; Deveaud B; Bongiovanni G; Mura A
    Phys Rev Lett; 2000 Jul; 85(2):385-8. PubMed ID: 10991289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled light-pulse propagation via dynamically induced double photonic band gaps.
    Wan RG; Kou J; Kuang SQ; Jiang L; Gao JY
    Opt Express; 2010 Jul; 18(15):15591-6. PubMed ID: 20720939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stopping light via hot atoms.
    Kocharovskaya O; Rostovtsev Y; Scully MO
    Phys Rev Lett; 2001 Jan; 86(4):628-31. PubMed ID: 11177898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared switching from resonant to passive photonic bandgaps: transition from purely photonic to hybrid electronic/photonic systems.
    Sadeghi SM; Li W
    J Phys Condens Matter; 2009 Apr; 21(15):155801. PubMed ID: 21825372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems.
    Sadeghi SM; Deng L; Li X; Huang WP
    Nanotechnology; 2009 Sep; 20(36):365401. PubMed ID: 19687539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast biexciton spectroscopy in semiconductor quantum dots: evidence for early emergence of multiple-exciton generation.
    Choi Y; Sim S; Lim SC; Lee YH; Choi H
    Sci Rep; 2013 Nov; 3():3206. PubMed ID: 24220495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient two-photon light amplification by a coherent biexciton wave.
    Shimano R; Svirko YP; Mysyrowicz A; Kuwata-Gonokami M
    Phys Rev Lett; 2002 Dec; 89(23):233601. PubMed ID: 12485007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomechanically induced transparency.
    Weis S; Rivière R; Deléglise S; Gavartin E; Arcizet O; Schliesser A; Kippenberg TJ
    Science; 2010 Dec; 330(6010):1520-3. PubMed ID: 21071628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetically induced transparency in semiconductors via biexciton coherence.
    Phillips MC; Wang H; Rumyantsev I; Kwong NH; Takayama R; Binder R
    Phys Rev Lett; 2003 Oct; 91(18):183602. PubMed ID: 14611283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching in polaritonic-photonic crystal nanofibers doped with quantum dots.
    Cox JD; Singh MR; Racknor C; Agarwal R
    Nano Lett; 2011 Dec; 11(12):5284-9. PubMed ID: 22040384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating light pulses via dynamically controlled photonic band gap.
    André A; Lukin MD
    Phys Rev Lett; 2002 Sep; 89(14):143602. PubMed ID: 12366046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transparency of magnetized plasma at the cyclotron frequency.
    Shvets G; Wurtele JS
    Phys Rev Lett; 2002 Sep; 89(11):115003. PubMed ID: 12225144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction-Induced Transparency for Strong-Coupling Polaritons.
    Lang J; Chang D; Piazza F
    Phys Rev Lett; 2020 Sep; 125(13):133604. PubMed ID: 33034488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polariton-biexciton transitions in a semiconductor microcavity.
    Neukirch U; Bolton SR; Fromer NA; Sham LJ; Chemla DS
    Phys Rev Lett; 2000 Mar; 84(10):2215-8. PubMed ID: 11017247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell.
    Bae IH; Moon HS; Kim MK; Lee L; Kim JB
    Opt Express; 2010 Jan; 18(2):1389-97. PubMed ID: 20173966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optically induced rotation of an exciton spin in a semiconductor quantum dot.
    Poem E; Kenneth O; Kodriano Y; Benny Y; Khatsevich S; Avron JE; Gershoni D
    Phys Rev Lett; 2011 Aug; 107(8):087401. PubMed ID: 21929205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton and biexciton fine structure in single elongated islands grown on a vicinal surface.
    Besombes L; Kheng K; Martrou D
    Phys Rev Lett; 2000 Jul; 85(2):425-8. PubMed ID: 10991299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fresnel light drag in a coherently driven moving medium.
    Artoni M; Carusotto I; La Rocca GC; Bassani F
    Phys Rev Lett; 2001 Mar; 86(12):2549-52. PubMed ID: 11289977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency matching in light-storage spectroscopy of atomic Raman transitions.
    Karpa L; Nikoghosyan G; Vewinger F; Fleischhauer M; Weitz M
    Phys Rev Lett; 2009 Aug; 103(9):093601. PubMed ID: 19792795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.