These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12906642)

  • 1. Impact of cosmic rays on stratospheric chlorine chemistry and ozone depletion.
    Müller R
    Phys Rev Lett; 2003 Aug; 91(5):058502. PubMed ID: 12906642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of cosmic rays on atmospheric chlorofluorocarbon dissociation and ozone depletion.
    Lu QB; Sanche L
    Phys Rev Lett; 2001 Aug; 87(7):078501. PubMed ID: 11497927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does cosmic-ray-induced heterogeneous chemistry influence stratospheric polar ozone loss?
    Müller R; Grooss JU
    Phys Rev Lett; 2009 Nov; 103(22):228501. PubMed ID: 20366127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential for ozone depletion in the arctic polar stratosphere.
    Brune WH; Anderson JG; Toohey DW; Fahey DW; Kawa SR; Jones RL; McKenna DS; Poole LR
    Science; 1991 May; 252(5010):1260-6. PubMed ID: 17842951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between cosmic rays and ozone depletion.
    Lu QB
    Phys Rev Lett; 2009 Mar; 102(11):118501. PubMed ID: 19392251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Chemistry of the H2SO4/HNO3/H2O System: Implications for Polar Stratospheric Clouds.
    Molina MJ; Zhang R; Wooldridge PJ; McMahon JR; Kim JE; Chang HY; Beyer KD
    Science; 1993 Sep; 261(5127):1418-23. PubMed ID: 17745351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of iodine on the Antarctic stratospheric ozone hole.
    Cuevas CA; Fernandez RP; Kinnison DE; Li Q; Lamarque JF; Trabelsi T; Francisco JS; Solomon S; Saiz-Lopez A
    Proc Natl Acad Sci U S A; 2022 Feb; 119(7):. PubMed ID: 35131938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions.
    Schoeberl MR; Hartmann DL
    Science; 1991 Jan; 251(4989):46-52. PubMed ID: 17778602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change and atmospheric chemistry: how will the stratospheric ozone layer develop?
    Dameris M
    Angew Chem Int Ed Engl; 2010 Oct; 49(44):8092-102. PubMed ID: 20922727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of ozone mini-holes on the heterogeneous destruction of stratospheric ozone.
    Stenke A; Grewe V
    Chemosphere; 2003 Jan; 50(2):177-90. PubMed ID: 12653290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11.
    Montzka SA; Dutton GS; Yu P; Ray E; Portmann RW; Daniel JS; Kuijpers L; Hall BD; Mondeel D; Siso C; Nance JD; Rigby M; Manning AJ; Hu L; Moore F; Miller BR; Elkins JW
    Nature; 2018 May; 557(7705):413-417. PubMed ID: 29769666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stratospheric response to trace gas perturbations: changes in ozone and temperature distributions.
    Brasseur G; Hitchman MH
    Science; 1988 Apr; 240(4852):634-7. PubMed ID: 17840906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-generated hydroxyl radicals contribute to the formation of halogen radicals leading to ozone depletion on and within polar stratospheric clouds surface.
    Jiao X; He C; Yu H; He J; Wang C
    Chemosphere; 2022 Mar; 291(Pt 1):132816. PubMed ID: 34752833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eleven-year variation in polar ozone and stratospheric-ion chemistry.
    Ruderman MA; Foley HM; Chamberlain JW
    Science; 1976 May; 192(4239):555-7. PubMed ID: 17745655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.
    Wilson SR; Solomon KR; Tang X
    Photochem Photobiol Sci; 2007 Mar; 6(3):301-10. PubMed ID: 17344964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stratospheric chlorine processing after the 2020 Australian wildfires derived from satellite data.
    Wang P; Solomon S; Stone K
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2213910120. PubMed ID: 36877843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes.
    Mahieu E; Chipperfield MP; Notholt J; Reddmann T; Anderson J; Bernath PF; Blumenstock T; Coffey MT; Dhomse SS; Feng W; Franco B; Froidevaux L; Griffith DW; Hannigan JW; Hase F; Hossaini R; Jones NB; Morino I; Murata I; Nakajima H; Palm M; Paton-Walsh C; Russell JM; Schneider M; Servais C; Smale D; Walker KA
    Nature; 2014 Nov; 515(7525):104-7. PubMed ID: 25373680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microphysics and heterogeneous chemistry of polar stratospheric clouds.
    Peter T
    Annu Rev Phys Chem; 1997; 48():785-822. PubMed ID: 15012456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds.
    Zondlo MA; Hudson PK; Prenni AJ; Tolbert MA
    Annu Rev Phys Chem; 2000; 51():473-99. PubMed ID: 11031290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ozone and aerosol changes during the 1991-1992 airborne arctic stratospheric expedition.
    Browell EV; Butler CF; Fenn MA; Grant WB; Ismail S; Schoeberl MR; Toon OB; Loewenstein M; Podolske JR
    Science; 1993 Aug; 261(5125):1155-8. PubMed ID: 17790351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.