These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 12906659)

  • 21. Effects of end surface and angle coupling on mode splitting and suppression in a cylindrical microcavity.
    Yan M; Zhang X; Wang J; Hou F; Yang L; Sun W; Yang Y; Wang T
    Appl Opt; 2019 Mar; 58(7):1752-1756. PubMed ID: 30874212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining.
    Song J; Lin J; Tang J; Liao Y; He F; Wang Z; Qiao L; Sugioka K; Cheng Y
    Opt Express; 2014 Jun; 22(12):14792-802. PubMed ID: 24977574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum dot spectroscopy using cavity quantum electrodynamics.
    Winger M; Badolato A; Hennessy KJ; Hu EL; Imamoğlu A
    Phys Rev Lett; 2008 Nov; 101(22):226808. PubMed ID: 19113509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanofiber-based high-Q microresonator for cryogenic applications.
    Hütner J; Hoinkes T; Becker M; Rothhardt M; Rauschenbeutel A; Skoff SM
    Opt Express; 2020 Feb; 28(3):3249-3257. PubMed ID: 32121997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO₂ laser welding.
    Fang Z; Lin J; Wang M; Liu Z; Yao J; Qiao L; Cheng Y
    Opt Express; 2015 Oct; 23(21):27941-6. PubMed ID: 26480452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction.
    Cohen JD; Meenehan SM; Painter O
    Opt Express; 2013 May; 21(9):11227-36. PubMed ID: 23669980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Q Si microresonators formed by substrate transfer on silica waveguide wafers.
    Ng W; Rockwood T; Persechini D; Chang D
    Opt Express; 2010 Dec; 18(26):27004-15. PubMed ID: 21196977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator.
    Liu S; Li J; Yu R; Wu Y
    Opt Express; 2013 Feb; 21(3):3501-15. PubMed ID: 23481808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fundamental limit of microresonator field uniformity and slow light enabled ultraprecise displacement metrology.
    Sumetsky M
    Opt Lett; 2021 Apr; 46(7):1656-1659. PubMed ID: 33793510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fiber-optical switch controlled by a single atom.
    O'Shea D; Junge C; Volz J; Rauschenbeutel A
    Phys Rev Lett; 2013 Nov; 111(19):193601. PubMed ID: 24266471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-space observation of spectral degeneracy breaking in a waveguide-coupled disk microresonator.
    Blaize S; Gesuele F; Stefanon I; Bruyant A; Lérondel G; Royer P; Martin B; Morand A; Benech P; Fedeli JM
    Opt Lett; 2010 Oct; 35(19):3168-70. PubMed ID: 20890322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator.
    Liu Y; Shi L; Xu X; Zhao P; Wang Z; Pu S; Zhang X
    Lab Chip; 2014 Aug; 14(16):3004-10. PubMed ID: 24941312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermo-optical pulsing in a microresonator filtered fiber-laser: a route towards all-optical control and synchronization.
    Rowley M; Wetzel B; Di Lauro L; Gongora JST; Bao H; Silver J; Del Bino L; Haye PD; Peccianti M; Pasquazi A
    Opt Express; 2019 Jul; 27(14):19242-19254. PubMed ID: 31503687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fully integrated high-Q Whispering-Gallery Wedge Resonator.
    Ramiro-Manzano F; Prtljaga N; Pavesi L; Pucker G; Ghulinyan M
    Opt Express; 2012 Sep; 20(20):22934-42. PubMed ID: 23037443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trapping light into high orbital momentum modes of fiber tapers.
    Strekalov DV; Savchenkov AA; Savchenkova EA; Matsko AB
    Opt Lett; 2015 Aug; 40(16):3782-5. PubMed ID: 26274659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
    Shambat G; Ellis B; Mayer MA; Majumdar A; Haller EE; Vučković J
    Opt Express; 2011 Apr; 19(8):7530-6. PubMed ID: 21503060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical bottle microresonators with axially uniform eigenmode field distribution.
    Sumetsky M
    Opt Lett; 2020 Aug; 45(15):4116-4119. PubMed ID: 32735237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loop coupled resonator optical waveguides.
    Song J; Luo LW; Luo X; Zhou H; Tu X; Jia L; Fang Q; Lo GQ
    Opt Express; 2014 Oct; 22(20):24202-16. PubMed ID: 25321995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.