These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 12906662)

  • 1. Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation.
    Kolesik M; Katona G; Moloney JV; Wright EM
    Phys Rev Lett; 2003 Jul; 91(4):043905. PubMed ID: 12906662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dramatic enhancement of supercontinuum generation in elliptically-polarized laser filaments.
    Rostami S; Chini M; Lim K; Palastro JP; Durand M; Diels JC; Arissian L; Baudelet M; Richardson M
    Sci Rep; 2016 Feb; 6():20363. PubMed ID: 26847427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solitary pulse propagation and soliton-induced supercontinuum generation in silica glasses containing silver nanoparticles.
    Driben R; Herrmann J
    Opt Lett; 2010 Aug; 35(15):2529-31. PubMed ID: 20680047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The study on supercontinuum generation of femtosecond pulse propagating in fused silica].
    Yang LL; Feng GY; Yang H; Zhou GR; Zhou H; Sui Z; Zhu QH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2489-93. PubMed ID: 19950659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.
    Hu X; Wang Y; Zhao W; Yang Z; Zhang W; Li C; Wang H
    Appl Opt; 2010 Sep; 49(26):4984-9. PubMed ID: 20830188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal evolution of femtosecond laser pulses guided in air-clad fused-silica nanoweb.
    Kreuzer C; Podlipensky A; Russell PS
    Opt Lett; 2010 Aug; 35(16):2816-8. PubMed ID: 20717467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular-alignment-assisted high-energy supercontinuum pulse generation in air.
    Cai H; Wu J; Bai X; Pan H; Zeng H
    Opt Lett; 2010 Jan; 35(1):49-51. PubMed ID: 20664669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly coherent mid-IR supercontinuum by self-defocusing solitons in lithium niobate waveguides with all-normal dispersion.
    Guo H; Zhou B; Zeng X; Bache M
    Opt Express; 2014 May; 22(10):12211-25. PubMed ID: 24921341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrest of self-focusing collapse in femtosecond air filaments: higher order Kerr or plasma defocusing?
    Kosareva O; Daigle JF; Panov N; Wang T; Hosseini S; Yuan S; Roy G; Makarov V; Chin SL
    Opt Lett; 2011 Apr; 36(7):1035-7. PubMed ID: 21478974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband supercontinuum generation in air using tightly focused femtosecond laser pulses.
    Liu XL; Lu X; Liu X; Feng LB; Ma JL; Li YT; Chen LM; Dong QL; Wang WM; Wang ZH; Wei ZY; Sheng ZM; Zhang J
    Opt Lett; 2011 Oct; 36(19):3900-2. PubMed ID: 21964135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers.
    Pureur V; Dudley JM
    Opt Lett; 2010 Aug; 35(16):2813-5. PubMed ID: 20717466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer from wide-band supercontinuum to narrow-band second harmonic generation.
    Wen J; Jiang H; Chen L; Zhang X; Gong Q
    Opt Express; 2010 Mar; 18(5):4206-11. PubMed ID: 20389433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High spectral power femtosecond supercontinuum source by use of microlens array.
    Camino A; Hao Z; Liu X; Lin J
    Opt Lett; 2014 Feb; 39(4):747-50. PubMed ID: 24562196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear X-wave formation by femtosecond filamentation in Kerr media.
    Couairon A; Gaizauskas E; Faccio D; Dubietis A; Di Trapani P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016608. PubMed ID: 16486296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of supercontinuum in nanofiber].
    Yang H; Feng GY; Zhu QH; Wang JJ; Li LL; Zhou H; Zhou SH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):874-7. PubMed ID: 19626862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison study of supercontinuum generation by molecular alignment of N2 and O2.
    Cai H; Wu J; Peng Y; Zeng H
    Opt Express; 2009 Mar; 17(7):5822-8. PubMed ID: 19333351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order cascading-assisted filamentation and controllable supercontinuum generation in birefringent crystals.
    Šuminas R; Tamošauskas G; Jukna V; Couairon A; Dubietis A
    Opt Express; 2017 Mar; 25(6):6746-6756. PubMed ID: 28381018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses.
    Zhang L; Yan Y; Yue Y; Lin Q; Painter O; Beausoleil RG; Willner AE
    Opt Express; 2011 Jun; 19(12):11584-90. PubMed ID: 21716390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Few-cycle solitons and supercontinuum generation with cascaded quadratic nonlinearities in unpoled lithium niobate ridge waveguides.
    Guo H; Zeng X; Zhou B; Bache M
    Opt Lett; 2014 Mar; 39(5):1105-8. PubMed ID: 24690682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air.
    Bergé L; Skupin S; Méjean G; Kasparian J; Yu J; Frey S; Salmon E; Wolf JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016602. PubMed ID: 15697742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.