These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12906883)

  • 21. Development of Equine IgG Antivenoms against Major Snake Groups in Mozambique.
    Guidolin FR; Caricati CP; Marcelino JR; da Silva WD
    PLoS Negl Trop Dis; 2016 Jan; 10(1):e0004325. PubMed ID: 26730709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antivenoms for the treatment of snakebite envenomings: the road ahead.
    Gutiérrez JM; León G; Burnouf T
    Biologicals; 2011 May; 39(3):129-42. PubMed ID: 21429763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches.
    Liu CC; You CH; Wang PJ; Yu JS; Huang GJ; Liu CH; Hsieh WC; Lin CC
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006138. PubMed ID: 29244815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endogenous thrombin potential as a novel method for the characterization of procoagulant snake venoms and the efficacy of antivenom.
    Isbister GK; Woods D; Alley S; O'Leary MA; Seldon M; Lincz LF
    Toxicon; 2010 Aug; 56(1):75-85. PubMed ID: 20338189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Snake venoms in science and clinical medicine. 2. Applied immunology in snake venom research.
    Theakston RD
    Trans R Soc Trop Med Hyg; 1989; 83(6):741-4. PubMed ID: 2617643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Report of a WHO workshop on the standardization and control of antivenoms.
    Theakston RD; Warrell DA; Griffiths E
    Toxicon; 2003 Apr; 41(5):541-57. PubMed ID: 12676433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pioneers of venom production for Australian antivenoms.
    Mirtschin P
    Toxicon; 2006 Dec; 48(7):899-918. PubMed ID: 16938322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional Application of Snake Venom Proteomics in In Vivo Antivenom Assessment.
    Tan CH; Tan KY
    Methods Mol Biol; 2019; 1871():153-158. PubMed ID: 30276739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms.
    O'Leary MA; Maduwage K; Isbister GK
    J Pharmacol Toxicol Methods; 2013; 67(3):177-81. PubMed ID: 23416032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming.
    Silva A; Hodgson WC; Isbister GK
    Toxins (Basel); 2017 Apr; 9(4):. PubMed ID: 28422078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antivenom for European Vipera species envenoming.
    Lamb T; de Haro L; Lonati D; Brvar M; Eddleston M
    Clin Toxicol (Phila); 2017 Jul; 55(6):557-568. PubMed ID: 28349771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical studies of the effectiveness and safety of antivenoms.
    Williams DJ; Habib AG; Warrell DA
    Toxicon; 2018 Aug; 150():1-10. PubMed ID: 29746978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How omics technologies can contribute to the '3R' principles by introducing new strategies in animal testing.
    Kroeger M
    Trends Biotechnol; 2006 Aug; 24(8):343-6. PubMed ID: 16782220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the potency of three Brazilian Bothrops antivenoms using in vivo rodent and in vitro assays. BIASG (Butantan Institute Antivenom Study Group).
    Laing GD; Theakston RD; Leite RP; da Silva WD; Warrell DA
    Toxicon; 1992 Oct; 30(10):1219-25. PubMed ID: 1440628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toxicology in the 21st century--working our way towards a visionary reality.
    Berg N; De Wever B; Fuchs HW; Gaca M; Krul C; Roggen EL
    Toxicol In Vitro; 2011 Jun; 25(4):874-81. PubMed ID: 21338664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Procoagulant snake venoms have differential effects in animal plasmas: Implications for antivenom testing in animal models.
    Maduwage KP; Scorgie FE; Lincz LF; O'Leary MA; Isbister GK
    Thromb Res; 2016 Jan; 137():174-177. PubMed ID: 26656242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Omics meets biology: application to the design and preclinical assessment of antivenoms.
    Calvete JJ; Sanz L; Pla D; Lomonte B; Gutiérrez JM
    Toxins (Basel); 2014 Dec; 6(12):3388-405. PubMed ID: 25517863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alternatives to animal experimentation in basic research.
    Gruber FP; Hartung T
    ALTEX; 2004; 21 Suppl 1():3-31. PubMed ID: 15586255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diversity of Micrurus snake species related to their venom toxic effects and the prospective of antivenom neutralization.
    Tanaka GD; Furtado Mde F; Portaro FC; Sant'Anna OA; Tambourgi DV
    PLoS Negl Trop Dis; 2010 Mar; 4(3):e622. PubMed ID: 20231886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca.
    Lauridsen LP; Laustsen AH; Lomonte B; Gutiérrez JM
    J Proteomics; 2017 Jan; 150():98-108. PubMed ID: 27593527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.