BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12908023)

  • 1. Novel thermal hysteresis proteins from low temperature basidiomycete, Coprinus psychromorbidus.
    Hoshino T; Kiriaki M; Nakajima T
    Cryo Letters; 2003; 24(3):135-42. PubMed ID: 12908023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis.
    Xiao N; Suzuki K; Nishimiya Y; Kondo H; Miura A; Tsuda S; Hoshino T
    FEBS J; 2010 Jan; 277(2):394-403. PubMed ID: 20030710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologous expression, refolding and functional characterization of two antifreeze proteins from Fragilariopsis cylindrus (Bacillariophyceae).
    Uhlig C; Kabisch J; Palm GJ; Valentin K; Schweder T; Krell A
    Cryobiology; 2011 Dec; 63(3):220-8. PubMed ID: 21884691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast.
    Lee JK; Park KS; Park S; Park H; Song YH; Kang SH; Kim HJ
    Cryobiology; 2010 Apr; 60(2):222-8. PubMed ID: 20067781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.
    Xiao N; Hanada Y; Seki H; Kondo H; Tsuda S; Hoshino T
    Cryobiology; 2014 Feb; 68(1):159-61. PubMed ID: 24201106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ice nucleation and antifreeze activities in pathogenesis and growth of snow molds.
    Snider CS; Hsiang T; Zhao G; Griffith M
    Phytopathology; 2000 Apr; 90(4):354-61. PubMed ID: 18944584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus.
    Cheng J; Hanada Y; Miura A; Tsuda S; Kondo H
    Biochem J; 2016 Nov; 473(21):4011-4026. PubMed ID: 27613857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel, intracellular antifreeze protein in an antarctic bacterium, Flavobacterium xanthum.
    Kawahara H; Iwanaka Y; Higa S; Muryoi N; Sato M; Honda M; Omura H; Obata H
    Cryo Letters; 2007; 28(1):39-49. PubMed ID: 17369961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low molecular weight peptide from snow mold with epitopic homology to the winter flounder antifreeze protein.
    Newsted WJ; Polvi S; Papish B; Kendall E; Saleem M; Koch M; Hussain A; Cutler AJ; Georges F
    Biochem Cell Biol; 1994; 72(3-4):152-6. PubMed ID: 7818849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities.
    Wang L; Duman JG
    Biochemistry; 2005 Aug; 44(30):10305-12. PubMed ID: 16042407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of boiling-soluble antifreeze protein from the legume Ammopiptanthus mongolicus.
    Wang W; Wei L
    Prep Biochem Biotechnol; 2003 Feb; 33(1):67-80. PubMed ID: 12693816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry.
    Ramløv H; DeVries AL; Wilson PW
    Cryo Letters; 2005; 26(2):73-84. PubMed ID: 15897959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretory production of Aspergillus oryzae xylanase XynF1, xynF1 cDNA product, in the basidiomycete Coprinus cinereus.
    Kikuchi M; Kitamoto N; Shishido K
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):728-33. PubMed ID: 14513296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a family of ice-active proteins from the Ryegrass, Lolium perenne.
    Kumble KD; Demmer J; Fish S; Hall C; Corrales S; DeAth A; Elton C; Prestidge R; Luxmanan S; Marshall CJ; Wharton DA
    Cryobiology; 2008 Dec; 57(3):263-8. PubMed ID: 18835384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycine-rich antifreeze proteins from snow fleas.
    Graham LA; Davies PL
    Science; 2005 Oct; 310(5747):461. PubMed ID: 16239469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ice-active proteins and cryoprotectants from the New Zealand alpine cockroach, Celatoblatta quinquemaculata.
    Wharton DA; Pow B; Kristensen M; Ramløv H; Marshall CJ
    J Insect Physiol; 2009 Jan; 55(1):27-31. PubMed ID: 18955061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of the thermal hysteresis of antifreeze proteins (AFPs) using sonocrystallization.
    Gaede-Koehler A; Kreider A; Canfield P; Kleemeier M; Grunwald I
    Anal Chem; 2012 Dec; 84(23):10229-35. PubMed ID: 23121544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.