These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12908232)

  • 1. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide.
    Scott CD; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):75-9. PubMed ID: 12908232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis.
    Gökçen T; Dateo CE; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):535-44. PubMed ID: 12908292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron catalyst chemistry in modeling a high-pressure carbon monoxide nanotube reactor.
    Scott CD; Povitsky A; Dateo C; Gökçen T; Willis PA; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):63-73. PubMed ID: 12908231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics.
    Dateo CE; Gökçen T; Meyyappan M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):523-34. PubMed ID: 12908291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process.
    Nikolaev P
    J Nanosci Nanotechnol; 2004 Apr; 4(4):307-16. PubMed ID: 15296221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-electron DFT modeling of SWCNT growth on iron catalysts from carbon monoxide feedstock.
    Gutsev GL; Mochena MD; Bauschlicher CW
    J Nanosci Nanotechnol; 2006 May; 6(5):1281-9. PubMed ID: 16792354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of metal-carbon nanotube interfaces for regrowth and electronic transport.
    Borjesson A; Zhu W; Amara H; Bichara C; Bolton K
    Nano Lett; 2009 Mar; 9(3):1117-20. PubMed ID: 19203204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial evolutions of Co and Ni atoms during single-walled carbon nanotubes formation: measurements and modeling.
    Cau M; Dorval N; Cao B; Attal-Trétout B; Cochon JL; Loiseau A; Farhat S; Scott CD
    J Nanosci Nanotechnol; 2006 May; 6(5):1298-308. PubMed ID: 16792356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.
    Duan H; Rosén A; Harutyunyan A; Curtarolo S; Bolton K
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6170-7. PubMed ID: 19198360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman-active modes of single-walled carbon nanotubes derived from the gas-phase decomposition of CO (HiPco process).
    Chen G; Sumanasekera GU; Pradhan BK; Gupta R; Eklund PC; Bronikowski MJ; Smalley RE
    J Nanosci Nanotechnol; 2002 Dec; 2(6):621-6. PubMed ID: 12908425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for nucleation and growth of single wall carbon nanotubes via the HiPcO process: a catalyst concentration study.
    Carver RL; Peng H; Sadana AK; Nikolaev P; Arepalli S; Scott CD; Billups WE; Hauge RH; Smalley RE
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1035-40. PubMed ID: 16108423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical models for simulating single-walled nanotube production in arc vaporization and laser ablation processes.
    Scott CD
    J Nanosci Nanotechnol; 2004 Apr; 4(4):368-76. PubMed ID: 15296226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of the initial stages of catalyzed single-wall carbon nanotubes growth: force field development.
    Martinez-Limia A; Zhao J; Balbuena PB
    J Mol Model; 2007 May; 13(5):595-600. PubMed ID: 17347824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bimetallic catalyst for synthesizing quasi-aligned, well-graphitized multiwalled carbon nanotube bundles on a large scale by the catalytic chemical vapor deposition method.
    Mukhopadhyay K; Mathur GN
    J Nanosci Nanotechnol; 2002 Apr; 2(2):197-201. PubMed ID: 12908309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A perfect carbon nanotube with two closed ends.
    Wang X; Liu Y; Zhu D
    J Nanosci Nanotechnol; 2002 Feb; 2(1):33-5. PubMed ID: 12908316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-pressure Raman study of debundled single-walled carbon nanotubes.
    Schlecht U; Venkateswaran UD; Richter E; Chen J; Haddon RC; Eklund PC; Rao AM
    J Nanosci Nanotechnol; 2003; 3(1-2):139-43. PubMed ID: 12908242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations.
    Ohta Y; Okamoto Y; Irle S; Morokuma K
    ACS Nano; 2008 Jul; 2(7):1437-44. PubMed ID: 19206312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modeling of the SWNT growth by CO disproportionation on CoMo catalysts.
    Monzon A; Lolli G; Cosma S; Mohamed SB; Resasco DE
    J Nanosci Nanotechnol; 2008 Nov; 8(11):6141-52. PubMed ID: 19198356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO.
    Herrera JE; Balzano L; Pompeo F; Resasco DE
    J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.