BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 12908233)

  • 1. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes.
    Strano MS; Moore VC; Miller MK; Allen MJ; Haroz EH; Kittrell C; Hauge RH; Smalley RE
    J Nanosci Nanotechnol; 2003; 3(1-2):81-6. PubMed ID: 12908233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion study of long and aligned multi-walled carbon nanotubes in water.
    Glory J; Mierczynska A; Pinault M; Mayne-L'Hermite M; Reynaud C
    J Nanosci Nanotechnol; 2007 Oct; 7(10):3458-62. PubMed ID: 18330157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evaluation of individual dispersion of single-walled carbon nanotubes using absorption and fluorescence spectroscopic techniques.
    Yoon D; Kang SJ; Choi JB; Kim YJ; Baik S
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3727-30. PubMed ID: 18047046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Surfactant Type, Dosage and Ultrasonication Temperature Control on Dispersity of Metal-Coated Multi-Walled Carbon Nanotubes.
    Liang X; Li W
    J Nanosci Nanotechnol; 2016 Apr; 16(4):4224-32. PubMed ID: 27451790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: a combined TEM and resonant micro-raman spectroscopy study.
    Shen K; Curran S; Xu H; Rogelj S; Jiang Y; Dewald J; Pietrass T
    J Phys Chem B; 2005 Mar; 109(10):4455-63. PubMed ID: 16851517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoluminescence mapping of "as-grown" single-walled carbon nanotubes: a comparison with micelle-encapsulated nanotube solutions.
    Okazaki T; Saito T; Matsuura K; Ohshima S; Yumura M; Iijima S
    Nano Lett; 2005 Dec; 5(12):2618-23. PubMed ID: 16351225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy.
    Musumeci AW; Waclawik ER; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):140-2. PubMed ID: 18207450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superacid-Surfactant Exchange: Enabling Nondestructive Dispersion of Full-Length Carbon Nanotubes in Water.
    Wang P; Kim M; Peng Z; Sun CF; Mok J; Lieberman A; Wang Y
    ACS Nano; 2017 Sep; 11(9):9231-9238. PubMed ID: 28792746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of ciprofloxacin from aqueous solutions by ionic surfactant-modified carbon nanotubes.
    Li H; Wu W; Hao X; Wang S; You M; Han X; Zhao Q; Xing B
    Environ Pollut; 2018 Dec; 243(Pt A):206-217. PubMed ID: 30172990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension.
    Tsyboulski DA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2008 Sep; 2(9):1770-6. PubMed ID: 19206415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Sonication on the Surface Quality of Single-Walled Carbon Nanotubes.
    Koh B; Cheng W
    J Pharm Sci; 2015 Aug; 104(8):2594-9. PubMed ID: 26017390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes.
    Ostos FJ; Lebrón JA; Moyá ML; Bernal E; Flores A; Lépori C; Maestre Á; Sánchez F; López-Cornejo P; López-López M
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33467613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions.
    McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of carbon nanotube dispersion using surfactants.
    Rastogi R; Kaushal R; Tripathi SK; Sharma AL; Kaur I; Bharadwaj LM
    J Colloid Interface Sci; 2008 Dec; 328(2):421-8. PubMed ID: 18848704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance of molecular hydrogen trapped in single-walled carbon nanotube bundles.
    Shiraishi M; Ata M
    J Nanosci Nanotechnol; 2002 Oct; 2(5):463-5. PubMed ID: 12908279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of bundling on the G' Raman band of single-walled carbon nanotubes.
    Cardenas JF; Gromov A
    Nanotechnology; 2009 Nov; 20(46):465703. PubMed ID: 19843989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic and dynamic light scattering in evaluating dispersion and size distribution of single-walled carbon nanotubes.
    Lee JY; Kim JS; An KH; Lee K; Kim DY; Bae DJ; Lee YH
    J Nanosci Nanotechnol; 2005 Jul; 5(7):1045-9. PubMed ID: 16108425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the bile salt surfactant sodium cholate in enhancing the aqueous dispersion stability of single-walled carbon nanotubes: a molecular dynamics simulation study.
    Lin S; Blankschtein D
    J Phys Chem B; 2010 Dec; 114(47):15616-25. PubMed ID: 21050001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman characterization of single-walled nanotubes of various diameters obtained by catalytic disproportionation of CO.
    Herrera JE; Balzano L; Pompeo F; Resasco DE
    J Nanosci Nanotechnol; 2003; 3(1-2):133-8. PubMed ID: 12908241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-activated surfactants for dispersion of carbon nanotubes.
    Cousins BG; Das AK; Sharma R; Li Y; McNamara JP; Hillier IH; Kinloch IA; Ulijn RV
    Small; 2009 Mar; 5(5):587-90. PubMed ID: 19242950
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.